An architectonic for science : the structuralist program

TABLE OF CONTENTS

PREFACE	xi
OVERVIEW	xv
NOTATIONAL CONVENTIONS	xxxiii
LIST OF SYMBOLS	xxxiv
LIST OF FORMAL DEFINITIONS OF EXAMPLES	xxxvi
 I: MODELS AND STRUCTURES I.0 Introduction I.1 Models and Potential Models I.2 Types and Structure Species I.3 Set-Theoretic Predicates and Lawlikeness I.4 Plausible Interpretations I.5 Example: Decision Theory I.6 Example: Collision Mechanics I.7 Example: Classical Particle Mechanics Bibliography 	1 2 6 14 20 23 26 29 34
 II: THEORY-ELEMENTS II.0 Introduction II.1 Cores and Intended Applications II.2 Constraints II.2.1 Extensivity of Energy in Equilibrium Thermodynamics II.2.2 Equality Constraint in Classical Mechanics II.2.3 The General Notion of a Constraint II.3 Theoreticity, Partial Potential Models, and Links II.3.1 An Intuitive Idea of Theoretical Concepts II.3.2 Intertheoretical Links Determining Non- 	36 36 37 40 41 44 46 47 47
Theoretical Terms	57

TABLE OF CONTENTS

	П.З.З	An Informal Criterion of Theoreticity	62
]	II.3.3.1 Spring Balance Determination of Weight	
		in CPM	68
	J	II.3.3.2 Collision Determination of Mass in CCM	72
	II.3.4	A Formal Criterion of Theoreticity	73
II.4	Theory	-Cores Expanded	78
II.5	Applica	ation Operators	79
II.6	Intende	ed Applications	86
II.7	Idealize	ed Theory-Elements and Empirical Claims	89
Bibl	iography	y -	93
III: SO	ME BA	SIC THEORY-ELEMENTS	95
III.0	Introd	uction	95
III.1	Classic	cal Collision Mechanics	96
	III.1.1	Potential and Actual Models of CCM	96
	III.1.2	Partial Potential Models of CCM	97
	III.1.3	Constraints for CCM	98
	III.1.4	The Theory-Element of CCM	99
III.2	Relativ	vistic Collision Mechanics	99
	III.2.1	Potential and Actual Models of RCM	99
	III.2.2	Partial Potential Models of RCM	100
	III.2.3	Constraints for RCM	101
	III.2.4	The Theory-Element of RCM	102
III.3	Classic	cal Particle Mechanics	103
	III.3.1	The Potential and Actual Models of CPM	103
		III.3.1.1 The Logical Status of Force in CPM	103
	III.3.2	The Partial Potential Models of CPM	105
	III.3.3	Constraints for CPM	105
	III.3.4	The Theory-Element of CPM	106
III.4	Dalton	ian Stoichiometry	108
	III.4.1	The Potential Models of DSTOI	108
	III.4.2	The Models of DSTOI	114
	III.4.3	The Partial Potential Models of DSTOI	117
	III.4.4	Constraints for DSTOI	120
	III.4.5	Links for DSTOI	121
	III.4.6	The Theory-Element of DSTOI and Its Claim	122
III.5	Simple	Equilibrium Thermodynamics	127
	III.5.1	The Potential Models of SETH	127
	III.5.2	The Actual Models of SETH	132

viii

TABLE OF CONTENTS	ix
III.5.3 The Partial Potential Models of SETH	137
III.5.4 Constraints for SETH	139
III.5.5 Links for SETH	147
III.6 Lagrangian Mechanics	149
III.6.1 The Potential and Actual Models of LAG	149
III.6.2 The Partial Potential Models of LAG	152
III.6.3 Constraints and Links for LAG	152
III.6.4 The Theory-Element of LAG	154
III.7 Pure Exchange Economics	155
HI.7.1 The Potential and Actual Models of PEE	155
III.7.2 The Partial Potential Models of PEE	159
III.7.3 The Theory-Element of PEE	161
Bibliography	165
IV: THEORY-NETS	167
IV.0 Introduction	167
IV.1 Specializations	168
IV.2 Theory-Nets	172
IV.3 Theory-Net Content and Empirical Claim	177
IV.4 The Theory-Net of Classical Particle Mechanics	180
IV.5 The Theory-Net of Simple Equilibrium	
Thermodynamics	191
Bibliography	203
V. THE DIACHRONIC STRUCTURE OF THEORIES	205
V.0 Introduction	205
V.1 Pragmatic Primitive Concepts	210
V.1.1 Historical Periods	211
V.1.2 Historical Precedence	212
V.1.3 Scientists	213
V.1.4 Scientific Communities and Scientific Generations	213
V.1.5 Scientific Propositional Attitudes	215
V.2 Theory-Evolutions	216
V.3 The Evolution of CPM	223
V.4 The Evolution of SETH	234
Bibliography	244
VI: INTERTHEORETICAL RELATIONS	247.
VI.0 Introduction	247
VI.1 Global Intertheoretical Relations	248

TABLE	OF	CO	NT	ΈN	ТS
-------	----	----	----	----	----

VI.2 Specialization and Theoretization	250
VI.3 Types of Reduction	252
VI.3.1 The Reduction of Collision Mechanics to	
Classical Particle Mechanics	255
VI.3.2 The Reduction of Rigid Body Mechanics to	
Classical Particle Mechanics	267
VI.4 A General Concept of Reduction	275
VI.5 Empirical Equivalence	284
VI.5.1 The Empirical Equivalence of Lagrangian and	
Classical Mechanics	292
VI.6 Equivalence	295
VI.7 Reduction, Language, and Incommensurability	306
Bibliography	320
	222
VII: APPROXIMATION	323
VII.0 Introduction	323
VII.1 Types of Approximation	323
VII.2 Intraneoretical Approximation	320
VII.2.1 Diurs on I wo Levels	212
VII.2.2 The Approximative Version of an Empirical	542
VII.2.5 The Approximative version of an Empirical	257
VII 2.4 Approximations in Theory Nate and Theory	552
VII.2.4 Approximations in Theory-Ivels and Theory-	257
VII 2 Intertheoretical Approximation	361
VII.2 1 Approximative Paduation	271
VII.2.1.1 The Case of the Kenler-Neuton	571
Palationshin	271
Dibliography	202
Bionography	202
VIII: THE GLOBAL STRUCTURE OF SCIENCE	386
VIII.0 Introduction	386
VIII.1 Theory-Holons	387
VIII.2 Theoreticity Reconsidered	391
VIII.3 Graphs and Paths	393
VIII.4 Local Empirical Claims in Global Theory-Holons	394
VIII.5 Intended Applications Reconsidered	404
VIII.6 Foundationalism Versus Coherentism	411
Bibliography	423
NAME INDEX	425
SUBJECT INDEX	428

х