Contents

Preface x			xiii
Part I: Fundamentals of Bayesian Inference			1
1	Prol	pability and inference	3
	1.1	The three steps of Bayesian data analysis	3
	1.2	General notation for statistical inference	4
	1.3	Bayesian inference	6
	1.4	Discrete examples: genetics and spell checking	8
	1.5	Probability as a measure of uncertainty	11
	1.6	Example: probabilities from football point spreads	13
	1.7	Example: calibration for record linkage	16
	1.8	Some useful results from probability theory	19
	1.9	Computation and software	22
	1.10	Bayesian inference in applied statistics	24
		Bibliographic note	25
	1.12	Exercises	27
2	Sing	le-parameter models	29
	2.1	Estimating a probability from binomial data	29
	2.2	Posterior as compromise between data and prior information	32
	2.3	Summarizing posterior inference	32
	2.4	Informative prior distributions	34
	2.5	Normal distribution with known variance	39
	2.6	Other standard single-parameter models	42
	2.7	Example: informative prior distribution for cancer rates	47
	2.8	Noninformative prior distributions	51
	2.9	Weakly informative prior distributions	55
		Bibliographic note	56
	2.11	Exercises	57
3		oduction to multiparameter models	63
	3.1	Averaging over 'nuisance parameters'	63
	3.2	Normal data with a noninformative prior distribution	64
	3.3	Normal data with a conjugate prior distribution	67
	3.4	Multinomial model for categorical data	69
	3.5	Multivariate normal model with known variance	70
	3.6	Multivariate normal with unknown mean and variance	72
	3.7	Example: analysis of a bioassay experiment	74
	3.8	Summary of elementary modeling and computation	78
	3.9	Bibliographic note	78
	3.10	Exercises	79

CONTENTS

4	As	ymptotics and connections to non-Bayesian approaches	83
	4.1	Normal approximations to the posterior distribution	83
	4.2	Large-sample theory	87
	4.3	Counterexamples to the theorems	89
	4.4	Frequency evaluations of Bayesian inferences	91
	4.5	Bayesian interpretations of other statistical methods	92
	4.6	Bibliographic note	97
	4.7	Exercises	98
5	Hie	erarchical models	101
	5.1	Constructing a parameterized prior distribution	102
	5.2	Exchangeability and hierarchical models	104
	5.3	Bayesian analysis of conjugate hierarchical models	108
	5.4	Normal model with exchangeable parameters	113
	5.5	Example: parallel experiments in eight schools	119
	5.6	Hierarchical modeling applied to a meta-analysis	124
	5.7	Weakly informative priors for variance parameters	128
	5.8	Bibliographic note	132
	5.9	Exercises	134
\mathbf{P}_{i}	art I]	I: Fundamentals of Bayesian Data Analysis	139
6	Mo	del checking	141
	6.1	The place of model checking in applied Bayesian statistics	141
	6.2	Do the inferences from the model make sense?	142
	6.3	Posterior predictive checking	143
	6.4	Graphical posterior predictive checks	153
	6.5	Model checking for the educational testing example	159
	6.6	Bibliographic note	161
	6.7	Exercises	163
7	Eva	luating, comparing, and expanding models	165
	7.1	Measures of predictive accuracy	166
	7.2	Information criteria and cross-validation	169
	7.3	Model comparison based on predictive performance	178
	7.4	Model comparison using Bayes factors	182
	7.5	Continuous model expansion	184
	7.6	Implicit assumptions and model expansion: an example	187
	7.7	Bibliographic note	192
	7.8	Exercises	193
8		leling accounting for data collection	197
	8.1	Bayesian inference requires a model for data collection	197
	8.2	Data-collection models and ignorability	199
	8.3	Sample surveys	205
	8.4 9 5	Designed experiments	214
	8.5 ° ¢	Sensitivity and the role of randomization	218
	8.6	Observational studies	220
	8.7 8.8	Censoring and truncation	224
	8.9	Discussion Bibliographia pote	229
		Bibliographic note Exercises	229
	0.10	TYCI (1909	230

CONT	ENTS	ix
9 De	cision analysis	237
9.1	Bayesian decision theory in different contexts	237
9.2	Using regression predictions: survey incentives	239
9.3	Multistage decision making: medical screening	245
9.4	Hierarchical decision analysis for home radon	246
9.5	Personal vs. institutional decision analysis	256
9.6	Bibliographic note	257
9.7	Exercises	257
Part I	III: Advanced Computation	259
10 Int	roduction to Bayesian computation	261
	1 Numerical integration	261
	2 Distributional approximations	262
	3 Direct simulation and rejection sampling	263
	4 Importance sampling	265
	5 How many simulation draws are needed?	267
	6 Computing environments	268
	7 Debugging Bayesian computing	270
	8 Bibliographic note	271
	9 Exercises	272
11 Ba	sics of Markov chain simulation	275
	1 Gibbs sampler	276
	2 Metropolis and Metropolis-Hastings algorithms	278
	3 Using Gibbs and Metropolis as building blocks	280
	4 Inference and assessing convergence	281
	5 Effective number of simulation draws	286
11.	6 Example: hierarchical normal model	288
11.	7 Bibliographic note	291
11.	8 Exercises	291
12 Co	omputationally efficient Markov chain simulation	293
12.	1 Efficient Gibbs samplers	293
12.	2 Efficient Metropolis jumping rules	295
12.	3 Further extensions to Gibbs and Metropolis	297
12.	4 Hamiltonian Monte Carlo	300
12.	5 Hamiltonian Monte Carlo for a hierarchical model	305
12.	6 Stan: developing a computing environment	307
12.	7 Bibliographic note	308
12.	8 Exercises	309
13 M	odal and distributional approximations	311
13.	1 Finding posterior modes	311
	2 Boundary-avoiding priors for modal summaries	313
	3 Normal and related mixture approximations	318
	4 Finding marginal posterior modes using EM	320
	5 Conditional and marginal posterior approximations	325
	6 Example: hierarchical normal model (continued)	326
	7 Variational inference	331
	8 Expectation propagation	338
13.	9 Other approximations	343

x		CONTENTS
13.1	0 Unknown normalizing factors	345
	1 Bibliographic note	348
	2 Exercises	349
Part I	V: Regression Models	351
14 Int	roduction to regression models	353
	Conditional modeling	353
14.2	2 Bayesian analysis of classical regression	354
14.3	8 Regression for causal inference: incumbency and voting	358
14.4	Goals of regression analysis	364
14.5	5 Assembling the matrix of explanatory variables	365
14.6	6 Regularization and dimension reduction	367
14.7	Unequal variances and correlations	369
14.8	3 Including numerical prior information	376
14.9	Bibliographic note	378
14.1	0 Exercises	378
15 Hie	rarchical linear models	381
15.1	Regression coefficients exchangeable in batches	382
15.2	2 Example: forecasting U.S. presidential elections	383
15.3	Interpreting a normal prior distribution as extra data	388
15.4	Varying intercepts and slopes	390
	Computation: batching and transformation	392
15.6	Analysis of variance and the batching of coefficients	395
15.7	'Hierarchical models for batches of variance components	398
	Bibliographic note	400
15.9	Exercises	402
16 Gei	neralized linear models	405
16.1	Standard generalized linear model likelihoods	406
16.2	Working with generalized linear models	407
16.3	Weakly informative priors for logistic regression	412
16.4	Overdispersed Poisson regression for police stops	420
16.5	State-level opinons from national polls	422
16.6	Models for multivariate and multinomial responses	423
16.7	Loglinear models for multivariate discrete data	428
	Bibliographic note	431
16.9	Exercises	432
	dels for robust inference	435
	Aspects of robustness	435
	Overdispersed versions of standard models	437
	Posterior inference and computation	439
	Robust inference for the eight schools	441
	Robust regression using t -distributed errors	444
	Bibliographic note	445
17.7	Exercises	446

CONTENTS xi		
18 Models for missing data	449	
18.1 Notation	449	
18.2 Multiple imputation	451	
18.3 Missing data in the multivariate normal and t models	454	
18.4 Example: multiple imputation for a series of polls	456	
18.5 Missing values with counted data	462	
18.6 Example: an opinion poll in Slovenia	463	
18.7 Bibliographic note	466	
18.8 Exercises	467	
Part V: Nonlinear and Nonparametric Models	469	
19 Parametric nonlinear models	471	
19.1 Example: serial dilution assay	471	
19.2 Example: population toxicokinetics	477	
19.3 Bibliographic note	485	
19.4 Exercises	486	
20 Basis function models	487	
20.1 Splines and weighted sums of basis functions	487	
20.2 Basis selection and shrinkage of coefficients	490	
20.3 Non-normal models and regression surfaces	494	
20.4 Bibliographic note	498	
20.5 Exercises	498	
21 Gaussian process models	501	
21.1 Gaussian process regression	501	
21.2 Example: birthdays and birthdates	505	
21.3 Latent Gaussian process models	510	
21.4 Functional data analysis	512	
21.5 Density estimation and regression	513	
21.6 Bibliographic note	515	
21.7 Exercises	516	
22 Finite mixture models	519	
22.1 Setting up and interpreting mixture models	519	
22.2 Example: reaction times and schizophrenia	524	
22.3 Label switching and posterior computation	533	
22.4 Unspecified number of mixture components	536	
22.5 Mixture models for classification and regression	539	
22.6 Bibliographic note	542	
22.7 Exercises	543	
23 Dirichlet process models	545	
23.1 Bayesian histograms	545	
23.2 Dirichlet process prior distributions	546	
23.3 Dirichlet process mixtures	549	
23.4 Beyond density estimation	557	
23.5 Hierarchical dependence	560	
23.6 Density regression	568	
23.7 Bibliographic note	571	
23.8 Exercises	573	

xii			CONTENTS	
Aj	ppend	lixes	575	
\mathbf{A}	Stan	dard probability distributions	577	
	A.1	Continuous distributions	577	
	A.2	Discrete distributions	585	
	A.3	Bibliographic note	586	
в	Outline of proofs of limit theorems		587	
	B.1	Bibliographic note	590	
\mathbf{C}	Computation in R and Stan		591	
	C.1	Getting started with R and Stan	591	
	C.2	Fitting a hierarchical model in Stan	592	
	C.3	Direct simulation, Gibbs, and Metropolis in R	596	
	C.4		603	
	C.5	Further comments on computation	607	
	C.6	Bibliographic note	608	
References			609	
Αı	ıthor	Index	643	
Subject Index			654	