Decision Theory

Principles and Approaches

Giovanni Parmigiani

Johns Hopkins University, Baltimore, USA

Lurdes Y. T. Inoue

University of Washington, Seattle, USA

with contributions by

Hedibert F. Lopes

University of Chicago, USA

Contents

Preface		xiii	
Ack	Acknowledgments		
1	Intro 1.1 1.2	duction Controversies A guided tour of decision theory	1 1 6
Par		Foundations	11
2	Coher 2.1 2.2 2.3 2.4	renceThe "Dutch Book" theorem2.1.1 Betting odds2.1.2 Coherence and the axioms of probability2.1.3 Coherent conditional probabilities2.1.4 The implications of Dutch Book theoremsTemporal coherenceScoring rules and the axioms of probabilitiesExercises	13 15 15 17 20 21 24 26 27
3	Utility 3.1 3.2 3.3 3.4 3.5 3.6 3.7	 St. Petersburg paradox Expected utility theory and the theory of means 3.2.1 Utility and means 3.2.2 Associative means 3.2.3 Functional means The expected utility principle The von Neumann–Morgenstern representation theorem 3.4.1 Axioms 3.4.2 Representation of preferences via expected utility Allais' criticism Extensions Exercises 	33 34 37 37 38 39 40 42 42 42 42 42 50 50

4	Utilit	y in action	55
	4.1		56
	4.2	Utility of money	57
		4.2.1 Certainty equivalents	57
		4.2.2 Risk aversion	57
		4.2.3 A measure of risk aversion	60
	4.3	Utility functions for medical decisions	63
		4.3.1 Length and quality of life	63
		4.3.2 Standard gamble for health states	64
		4.3.3 The time trade-off methods	64
		4.3.4 Relation between QALYs and utilities	65
		4.3.5 Utilities for time in ill health	66
		4.3.6 Difficulties in assessing utility	69
	4.4	Exercises	70
5	Ram	sey and Savage	75
	5.1	Ramsey's theory	76
	5.2	Savage's theory	81
		5.2.1 Notation and overview	81
		5.2.2 The sure thing principle	82
		5.2.3 Conditional and a posteriori preferences	85
		5.2.4 Subjective probability	85
		5.2.5 Utility and expected utility	90
		Allais revisited	91
		Ellsberg paradox	92
	5.5	Exercises	93
6	State	independence	97
	6.1	Horse lotteries	98
	6.2	State-dependent utilities	100
	6.3	and a second	101
	6.4	Anscombe-Aumann representation theorem	103
	6.5	Exercises	105
Pa	rt Two	Statistical Decision Theory	109
7	Decis	ion functions	111
	7.1	Basic concepts	112
		7.1.1 The loss function	112
		7.1.2 Minimax	114
		7.1.3 Expected utility principle	116
		7.1.4 Illustrations	117
	7.2	Data-based decisions	120
		7.2.1 Risk	120
		7.2.2 Optimality principles	121

VI

		7.2.3 Rationality principles and the Likelihood Principle	123
		7.2.4 Nuisance parameters	125
	7.3	The travel insurance example	126
	7.4	Randomized decision rules	131
	7.5	Classification and hypothesis tests	133
		7.5.1 Hypothesis testing	133
		7.5.2 Multiple hypothesis testing	136
		7.5.3 Classification	139
	7.6	Estimation	140
		7.6.1 Point estimation	140
		7.6.2 Interval inference	143
	7.7	Minimax-Bayes connections	144
	7.8	Exercises	150
8	Adm	issibility	155
	8.1	Admissibility and completeness	156
	8.2	Admissibility and minimax	158
	8.3	Admissibility and Bayes	159
		8.3.1 Proper Bayes rules	159
		8.3.2 Generalized Bayes rules	160
	8.4	Complete classes	164
		8.4.1 Completeness and Bayes	164
		8.4.2 Sufficiency and the Rao–Blackwell inequality	165
		8.4.3 The Neyman–Pearson lemma	167
	8.5	Using the same α level across studies with different sample	
		sizes is inadmissible	168
	8.6	Exercises	171
9	Shrin	nkage	175
	9.1	The Stein effect	176
	9.2	Geometric and empirical Bayes heuristics	179
		9.2.1 Is \mathbf{x} too big for $\boldsymbol{\theta}$?	179
		9.2.2 Empirical Bayes shrinkage	181
	9.3	General shrinkage functions	183
		9.3.1 Unbiased estimation of the risk of $x + g(x)$	183
		9.3.2 Bayes and minimax shrinkage	185
	9.4	Shrinkage with different likelihood and losses	188
	9.5	Exercises	188
10		ing rules	191
	10.1	Betting and forecasting	192
	10.2	Scoring rules	193
		10.2.1 Definition	193
		10.2.2 Proper scoring rules	194
		10.2.3 The quadratic scoring rules	195
		10.2.4 Scoring rules that are not proper	196

x CONTENTS

	10.3	Local scoring rules	197
	10.4	Calibration and refinement	200
		10.4.1 The well-calibrated forecaster	200
		10.4.2 Are Bayesians well calibrated?	205
	10.5	Exercises	207
11	Choo	sing models	209
	11.1	The "true model" perspective	210
		11.1.1 Model probabilities	210
		11.1.2 Model selection and Bayes factors	212
		11.1.3 Model averaging for prediction and selection	213
	11.2	Model elaborations	216
	11.3	Exercises	219
Par	rt Thr	ee Optimal Design	221
12		mic programming	223
	12.1	History	224
		The travel insurance example revisited	226
	12.3	Dynamic programming	230
		12.3.1 Two-stage finite decision problems	230
		12.3.2 More than two stages	233
	12.4	Trading off immediate gains and information	235
		12.4.1 The secretary problem	235
		12.4.2 The prophet inequality	239
	12.5	Sequential clinical trials	241
		12.5.1 Two-armed bandit problems	241
		12.5.2 Adaptive designs for binary outcomes	242
		Variable selection in multiple regression	245
	12.7	Computing	248
	12.8	Exercises	251
13		ges in utility as information	255
	13.1	Measuring the value of information	256
		13.1.1 The value function	256
		13.1.2 Information from a perfect experiment	258
		13.1.3 Information from a statistical experiment	259
		13.1.4 The distribution of information	264
	13.2	Examples	265
		13.2.1 Tasting grapes	265
		13.2.2 Medical testing	266
		13.2.3 Hypothesis testing	273
	13.3	Lindley information	276
		13.3.1 Definition	276
		13.3.2 Properties	278
		13.3.3 Computing	280
		13.3.4 Optimal design	281

CONTENTS	
CONTENTS	X1

	13.4	Minimax and the value of information	283
	13.5	Exercises	285
14	Sami	ple size	289
	14.1	Decision-theoretic approaches to sample size	290
		14.1.1 Sample size and power	290
		14.1.2 Sample size as a decision problem	290
		14.1.3 Bayes and minimax optimal sample size	292
		14.1.4 A minimax paradox	293
		14.1.5 Goal sampling	295
	14.2	Computing	298
	14.3	Examples	302
		14.3.1 Point estimation with quadratic loss	302
		14.3.2 Composite hypothesis testing	304
		14.3.3 A two-action problem with linear utility	306
		14.3.4 Lindley information for exponential data	309
		14.3.5 Multicenter clinical trials	311
	14.4	Exercises	316
15	Stop	ping	323
		Historical note	324
	15.2	A motivating example	326
	15.3	Bayesian optimal stopping	328
		15.3.1 Notation	328
		15.3.2 Bayes sequential procedure	329
		15.3.3 Bayes truncated procedure	330
	15.4	Examples	332
		15.4.1 Hypotheses testing	332
		15.4.2 An example with equivalence between sequential and	
		fixed sample size designs	336
	15.5		337
	15.6	The stopping rule principle	339
		15.6.1 Stopping rules and the Likelihood Principle	339
		15.6.2 Sampling to a foregone conclusion	340
	15.7	Exercises	342
Ap	pendix		345
A.1			345
A.2		tions	349
A.3		bability (density) functions of some distributions	350
A.4	Conj	jugate updating	350
References			
Ind	ex		367