CONTENTS

EDITO	r's f	OREWORD	•	•	V						
CHAPTER I											
INTRODUCTION TO MODAL PROPOSITIONAL LOGIC											
SECTI	on 0 .	Historical sketch	•	•	1						
_		Modalities in Aristotle			1						
Ş		Modalities in traditional logic		•	2						
_	03 .	Logical algebra in the XIX ¹⁸ Century .			3						
§	04 .	The Lewis's systems	•	•	4						
§	05 .	Further developments		•	5						
§	06.	Interpretation	•	•	7						
Section 1. Notations. Recapitulation of non-modal calculus 8											
		Notations			8						
~		Criterion for validity of formulas in APC			9						
_		List of valid formulas in APC (a-theorems)			11						
		Postulates for APC			16						
_		Derivations in APC			16						
_		Matrices			19						
§		Postulates for the assertoric functional cal									
		of the first order (AF¹C)	•	•	21						
§	17 .	Principal theorems and derived rules prop		to							
		$AF^{1}C$	•		23						
§	18 .	Replacement of material by formal connec									
		in monadic AF¹C	•	•	24						

X Contents

SECTION 2.	Heuristical approach to modal propositional	
	logic	27
§ 20 .	Idea of the auxiliary logic M"PQ	27
§ 21.	The calculus M'PQ	29
§ 22.	The logic M"PQC	30
§ 23.	Postulates suggested by the heuristical correspondence	31
§ 24 .	Principal theorems and rules about modalities	
3	in M"PQC (m-theorems)	32
§ 25.	Designations of formulas and rules (S-, s-, S'-, S'- and S''- transforms)	33
8 2 6	Replacement of material connectives by strict	
y 20.	connectives in M'PQC	34
8 27	Transformations of APC theorems valid in	
3	M"PQC (sa-, Sa-, S'a-theorems)	37
8 28 .	Transformations of theorems and rules about	0,
3 ~~.	modalities (sm-formulas)	40
§ 29.		
3 -01	lates	41
	CHAPTER II	
FORM	AL SYSTEMS OF MODAL PROPOSITIONAL LOGIC	3
SECTION 3	Systems 1° and 1	43
	Postulates for system 1°	43
-	Theorems and derived rules (material connec-	
	tives) in S 1°	47
§ 32.	Derived rules in system 1° (strict implication).	52
§ 33.	Explicit modalities in S 1°	55
	General metatheorems for system 1°	58
-	T-theorems in system 1°	60
	The system 1	
	Theorems proper to system 1	65
	No finite characteristic matrix for system 1.	
§* 39 .		

	Contents	XI	
SECTION 4.	Systems 2° and 2	68	
	Postulates for the systems 2° and 2		
	Distribution of modalities in S 2°. (First set: Im-		
•	plications)	69	
§ 42 .	Factor- and decomposition-theorems in S 2°.		
_	$S'a$ -theorems in $S.2^{\circ}$		
-	Distribution of modalities in S 2° (Second set:	• —	
4.3	Equivalences)	71	
§ 45 .	Strict equivalence in S 2°		
	Becker's rules in S 2°		
	Theorems provable in system 2 only		
	Underivability of formulas in S 2		
	S2-matrices and decision-method for S2		
_	An alternative set of postulates for S2		
•	An alternative set of postulates for S2°.		
ð	and distributed out of posturates for sec.	, 0	
SECTION 5.	System 3	79	
§ 50 .	Postulates for system 3	79	
§ 51 .	Immediate consequences	80	
§ 52 .	Exported theorems and other consequences .	82	
§ 53.	Reduction-theorems	83	
§ 54 .	Reduction of all modalities to 42	85	
§ 55.	Implications between modalities	86	
§ 56.	Underivability of other implications between		
	modalities	88	
§ 57 .	Alternative set of postulates for system 3	88	
§* 58 .	Proper subsystems of S 3 (Systems 3° and 3*) .	91	
SECTION 6	System 4	92	
	Postulates for system 4		
•	Reduction of modalities in system 4	93	
u	Theorems and rules valid in system 4	95	
•	Alternative sets of postulates for system 4.	97	
•	Various forms of the deduction theorem in	/ 1	
3 04.	system 4	102	
R RE			
•	L-system equivalent to system 4	109	
~			
	Some alternative sets of postulates for system 4		
§ *o ℧.	A proper subsystem of S 4 (System 4°)	113	

.

XII CONTENTS

SECTION 7.	System 5
	Postulates for system 5
•	Reduction of modalities in system 5 115
-	Reduction of modal functions in system 5 117
•	Alternative sets of postulates for system 5 . 118
SECTION 8.	Extensions
§ ∗80 .	Some extensions of system 1° (Systems T° and T x) 122
§ 81.	Extension of system 2: System 2' (or T, or M). 123
§ 82.	Relations between system 2' and other systems. 124
§ 83.	Theorems provable in system 2' 126
§* 84 .	Other systems equivalent to system 2' (Systems
	S' and M*)
§ 85.	Extensions of system 2' (Systems 4 ⁿ) 12'
§ 86.	Extensions of system 3 (System K)
§ 87.	Extensions of system 4 (Systems 4.1 and 4.5) . 129
§ 88.	Extensions reducing modal systems to APC . 133
SECTION 9.	Extensions (continued)
§ 91.	Extensions generated by postulates of universal
	possibility (Systems 6, 7 and 8)
§ 94.	Postulates of irreducibility
§ 95 .	Propositional variables
§ 96.	Extensions with bound propositional variables. 137
SECTION *9	'. Some other modal systems 139
§*9'1.	Halldén's system 0
_	Lemmon's system 0.5
	Shaw-Kwei's systems B and B _n (namely B ₂ or S'3)
§*9′4.	Porte's systems Sa, Sb, Sc and related ones 140

Contents

CHAPTER III

MODAL FUNCTIONAL LOGIC

SEC	TI	on 10	Outline of MFQ, without abstraction	146
	§	101.	Atomic propositions in MFQ	146
	§	102.	Purely quantified and molecular propositions	
			in MFQ	147
	§	103 .	Derivation of MFQ-formulas with quantifiers.	148
	§	104 .	Formulas peculiar to MF¹Q	149
	§	105.	Second order modal functional logic and iden-	150
	ድ	106	Transition to an abbreviated MFC calculus .	
	8	100.	transition to an abbreviated Mrc carculus .	131
Sec	TI	on 11	. Abstracts	152
			Abstraction	
	§	112.	Abstracts in propositional logic	153
	§	113.	Abstracts $\hat{\mathbf{x}}M$	155
			Abstracts $\hat{\mathbf{x}}^{\dagger}M$	
	§	115.	Abstracts of MF ² Q and identity	158
	§	116.	Abstracts â M	159
	§	117.	Transition from MFQ to MFC	160
SEC	TOT	ov 19	2. First-order functional calculus	162
OEC			Postulates	
	_		Obvious derived theorems	
	•		Modalities with quantifiers	
	- 		Functional parallels of weak transformations	103
	ઝ	, A. T.	of MPC	164
	§	125.	Theorems restricted to MF¹C	164
	§	126 .	Rule of replacement	165
	§	127.	Deduction theorem	165
SEC	זידינ	ON 15	3. Identity	167
~ 3.4 %			Postulates for identity	
	_		Definitions for both forms of identity	
	_		Immediate consequences	

IV	CONTENTS

§	133.	Ide	ntit	y e	xpre	esse	l by	m	eans	of	an	un	iver	sal	
		imp	olic	atio	n	•	•	•	•	-	•	•	•	•	168
§	134.	Ide	ntit	y e	xpre	ssec	l by	me	ans	of	an (exis	tenti	ial	
		pro	pos	itio	n	•	•	•	•	•	•	•	•	•	169
§	135.	Equ	iiva	lend	ces t	etw	reen	i an	d I	•	•	•	•	•	170
§	136.	No	n-id	ent	ity	•	•	•	-	•	•	•	•	•	170
§	137.	The	ore	ms	upo	n n	on-i	dent	ity	•		•	•	•	170
						* /	\PPI	ND	ΙΧ						
						• •	~ ·		-						
SECTI	ON *1	4 . <i>1</i>	L-fo	rmu	latio	ons	of m	ođa	1 pr	opos	sitio	nal	logi	cs,	
		gir	ing	đe	cisio	n p	roce	dure	es fo	or th	ie s	yster	ms S	S2,	
		S3.	, S4	, S5	aná	! S2'	•	•	•	•	•		•		173
§:	*141.	Sys	tem	es o	f O	nish	i ar	ud N	lats	umo	to,	rela	ted	to	
		S2	, S3	, S4,	, S5	and	S2'	•	•	•		•	•		173
§:	*142.	Sys	ten	as o	f Ka	ange	r, r	elat	ed t	o S	4 (s	yste	m 4	*),	
		S5	(sy	sten	n 5*)	an	d S2	(sy	sten	a t*)	•	•	•	•	178
'Rypt 1	OGRA	DIIV													187
ויינמיליד	OGNA.	CIII	•	•	•	•	•	•	•	•	•	•	•	•	107
Indic	CES	•	•	•		•	•	•	•	•	•	•	•	•	217