CONTENTS

Pa	rt 1 The Cantorian origins of set theory	1	
In	Introduction to Part 1: The background to the theory of ordinals		
1	Cantor's theory of infinity	12	
	1.1 Free mathematics	14	
	1.2 The potential infinite and reductionism	24	
	1.3 Cantorian finitism and the concept of set	32	
50	1.4 Cantor's absolute	40	
2	The ordinal theory of powers	49	
	2.1 The generating principles	49	
	2.2 The scale of number-classes	59	
	2.3 The attack on the continuum problem	74	
	(a) First step: the uncountability of the continuum and		
	the second number-class	74	
	(b) What did Cantor achieve?	81	
	(c) The continuum hypothesis and later developments	98	
3	Cantor's theory of number	119	
	3.1 Cantor's abstractionism, set reduction, and Frege-Russell	120	
	3.2 Difficulties with the strange theory of 'ones'	128	
	3.3 The theory of 'ones' sensibly construed	133	
	3.4 Order-types	142	
	3.5 Cantor and well ordering	146	
4	The origin of the limitation of size idea	165	
	4.1 The Absolute and limitation of size	165	
	4.2 Jourdain's limitation of size theory	176	
	4.3 Modifying comprehension by limitation of size	182	
	4.4 Mirimanoff	185	
Pa	rt 2 The limitation of size argument and axiomatic set theory	195	
In	Introduction to Part 2		
5	The limitation of size argument	198	
	5.1 Fraenkel's argument criticized	199	
	5.2 The explanatory role of limitation of size	208	
	5.3 The power-set axiom	211	

CONTENTS	
CONTENTS	

6	The completability of sets	214
	6.1 The iterative conception	214
	6.2 Completability and Kant's first antinomy	223
	(a) Contradiction or sleight of hand?	225
	(b) Completability and constructivity	233
7	The Zermelo system	240
	7.1 Zermelo's separation axiom as a limitation of size principle	240
	7.2 Zermelo's reductionism	244
	(a) Zermelo's reductionist treatment of number	245
	(b) Zermelo's reductionist treatment of the contradictions	249
	7.3 Reductionism and well-ordering	253
	(a) Zermelo's 1904 proof	253
	(b) Inclusion orderings and the 1908 proof	256
	7.4 The problem of definite properties	266
8	Von Neumann's reinstatement of the ordinal theory of size	270
	8.1 The von Neumann theory of ordinals	271
	8.2 The discovery of the replacement axiom	280
	8.3 Limitation of size revisited	286
Conclusion		299
Bibliography		307
Name index		321
Subject index		324

xxii

i.