CONTENTS OF THE FIRST VOLUME.

INTRODUCTION.

I. Thought, the hidden world, 1; The only moving principle, 2; History of Nature, how to be understood, 2; Not intelligible without intellect, 2; History of savage tribes, what is it ? 3; Two ways in which thought enters into history, 4; Definition of thought impossible, 4; Relation of outer and inner worlds undefined, 5; Many meanings of thought, 5; Thought of the present age, 6; Contemporary history, to what extent possible and valuable; 6; Supposed objectivity of historians, 7; Value of contemporary records, 8; Mystery of the life of thought, 8; Latent thought the material for genius, 8; Contemporary record of thought more faithful, 10; Events of the immediate past, 10; Changes of language, 11; Coining of new words, 12; Object of this work, 13; Not a political history, nor a history of science, literature, and art, 13; Influences which have a result on our inner life, 14; Personal knowledge necessary, 14; American influence only touched upon, 14; Only French, German, and English thought treated, 15; Unity of thought, a product of this century, 16; Voltaire, 16; Adam Smith, 16; Coleridge and Wordsworth, 17; Mme. de Staël, 17; Paris the focus of science, 17; Babbage, Herschel, and Peacock, 18; Liebig's laboratory, 18; Comte's philosophy, 18; Constable's influence in France, 19; Science become international, 19; The light which etymology throws on the history of thought, 20; Goethe, 22; Peculiarity of the German language, 22; New thought has found new words, 23; De Bonald and Max Müller, 23; Thought, how expressed in French and German, 24; Philosophy of history, 25; Want of precise terms in German and French, 26; Carlyle, 26.

- II. The two factors of intellectual progress, 27; Object of the book, 28; Nineteenth century, what it has achieved : (a) Method of knowledge; (b) Unity of knowledge, 29; Search after truth, 29; Method of science, practised by Galileo, &c., defined by Bacon, &c., 30; Disintegration of learning, 30; Apparent distance between science and poetry, 31; Closer connection between science and life, 31; What has nineteenth century done for the ideals? 32; Deeper conception of the unity of human interests, 33; Different terms for expressing this unity, 33; Definition of thought, 33; Age of encyclopædic treatment of learning, 34; Unity of knowledge gradually lost sight of, 35; Lectures on "Encyclopädie" in Germany, 37; Encyclopædias did not fulfil their promise, 39; French were masters in science in beginning of the century, 41; Reaction in Germany against metaphysics, 43; Reform in school literature, 44; Germany has taken the lead in studying the life of thought, 46; Transition from metaphysical to historical method, 47; Herbert Spencer, 48; Lotze, 48; Herder's 'Ideen,' 50; Humboldt's 'Kosmos,' 51; Lotze's 'Microcosmus,' 52; What the mental life of mankind consists of, 55; Methods have their day and cease to be, 56.
- III. Necessity of choosing a road, 57; No central event in our age, 58; Is history of thought history of philosophy? 60; Goethe's work involves the deepest thought of the century, 61; Philosophy retrospective, 62; Two questions, 63; Speculation, 64; Philosophy defined, 65; Division of the book, 65; Neither science nor philosophy exhausts "thought," 66; Thought also hidden in literature and art, 66; Goethe's and Wordsworth's influence, 67; Unmethodical thought, 68; Summed up in term "religious thought," 69; Science is exact, 69; Subjective interests, 70; Philosophy intermediate between exact science and religion, 71; Threefold aspect of thought: scientific, philosophical, individual, 72; Difficult to separate the three aspects, 74; French thought centred in science, 75; State of philosophy in England, 75; Goethe's 'Faust' representative of the thought of the century, 76; A period of ferment, 76; Caused by the Revolution, 77; Thought of century partly radical, partly reactionary, 77; Byronic school, 78; Revolutionary theories, 79; Thought to be considered as a constructive power, 80; Darwin, Spencer, and Lotze, 81; Romanticism, 82; Scientific thought to be dealt with first, 84; Hegel's doctrine, 85.

х

PART I.-SCIENTIFIC THOUGHT.

Three chapters on the growth and the diffusion of the scientific spirit in the first half of the nineteenth century.

CHAPTER I.

THE SCIENTIFIC SPIRIT IN FRANCE.

Our century the scientific century, 89; Difference of English and Continental notions of science, 91; Relation of science and life, 92; Foreseen by Bacon, 93; Defect in Bacon's Philosophy, 94; Corrected by Newton, 95; Bacon's and Newton's ideas taken up by French philosophers: Bacon and Newton compared, 96; Laplace's work, 97; French Academy of Sciences, 99; Continental methods in mathematics, 100; Modern analytical methods, 102; Older synthetical methods, 103; Influence of science on French literature, 104; Absence of this influence in England and Germany, 106; Schools of science in Paris, 106; Promoted by Governments of Revolution, 108; Condorcet, 110; Lakanal, 111; École normale, École polytechnique, 112; Monge's 'Descriptive Geometry,' 114; Science of Chemistry, 114; New mathematical sciences, 116; Crystallography, 116; Theory of probability, 118; Laplace gained his results by disregarding "individuality," 124; The centre of interest in the sciences of life, 125; Into this centre Cuvier carried exact research, 128; Cuvier's training, 133; Cuvier the greatest representative of the Academic system, 136; Science during the Revolution and First Empire, 138; Popularisation of science in France, 142; Literary and national popularisation, 142; Dangers of the former, 143; The Revolution added the practical popularisation, 145; Influence of the first Napoleon on science, 149; Napoleon favoured the mathematical sciences, 151; Discountenanced contemporary philosophy, 152; Used statistical methods, 153; Prominence given deservedly to French names by Cuvier, 155.

CHAPTER II.

THE SCIENTIFIC SPIRIT IN GERMANY.

Foundation of German universities, 158; Development of the universities by the people, 159; Geographical distribution of the universities, 162; Full development of the German university system, 163; Philosophical faculty, 164; University of Göttingen, 164; Relation of universities and

high schools, 166; The university a training-school for research, 167; The ideal of Wissenschaft, 168; Developed under the German university system, 170; Reception of exact science in Germany, 174; Science not yet domiciled during the eighteenth century, 178; Scientific periodicals, 180; Gauss's mathematical researches, 181; Scientific spirit enters the universities in second quarter of century, 183; Jacobi's mathematical school, 185; Chemical laboratories established in 1826 through Liebig, 188; Cosmopolitan character of German science, 189; Liebig's organic analysis, 191; Biology a German science, 193; Cellular theory of Schleiden, 194; and Schwann, 195; Ernst Heinrich Weber, 196; and Johannes Müller, 197; Psychophysics, 198; Spirit of exact research and Wissenschaft, 202; Encyclopædic view necessary in philosophy and history, 203; Philosophy of Nature, 204; Conflict between the scientific and the philosophical views, 205; A. von Humboldt, 206; Influence of Berzelius on German science, 208; Philosophy of Nature and medical science, 209; Science for its own sake, 211; Bequest of the classical and philosophical school, 211; Completeness and thoroughness of research, 213; Combination of research and teaching, 214; Combination of science and philosophy, 215; Biology grown out of science and philosophy combined, 216; Du Bois-Reymond on Müller, 217; "Vital force" abandoned, 218; Mechanical view in biology, 219; Criticism of principles of mathematics, 221; The exact, the historical, and the critical habits of thought, 222.

CHAPTER III.

THE SCIENTIFIC SPIRIT IN ENGLAND.

Scientific organisation abroad, 226; Similar institutions in Great Britain, 227; English science in the early part of the century, 229; Alleged decline of science in England, 230; Criticisms of Playfair, 231; Babbage's criticisms, 233; Foreign opinions on English science, 235; English replies to Babbage, 238; Foundation of the British Association, 238; Characteristics of higher mental work in England, 239; Academies and universities not always impartial, 240; Fourier, 241; Fresnel, 241; Plücker, 242; Grassmann, 243; Central organisation wanting in England, 243; Thomas Young, 244; Dalton, 245; Faraday, 246; Green, 246; Boole, 247; Babbage, 248; Characteristics of English thought, 249; Absence of schools of scientific thought, 250; Individual character and practical tendency of English science, 251; English peculiarities more pronounced during earlier part of the century, 252; Unique character of English universities, 254; Ideal of "liberal education," 255; Union of education and instruction, 258; Educational organisations in England, 262; The

Royal Institution, 264; Manchester Literary and Philosophical Society, 265; John Dawson of Sedbergh, 267; The Scotch Universities, 267; The Royal Society of Edinburgh, 269; The 'Edinburgh Review,' 270; The Analytical Society of Cambridge, 271; University life in Scotland, 271; The Dublin Mathematical School, 274; Importance of British contributions to science, 276; Diffusion of scientific knowledge on the Continent, 276; Isolation of English men of science, 277; Individualism of the English character, 279; Changes during the last fifty years, 280; British contributions to biology, 282; Jenner, 284; English love of nature, 284; Union of individualism and naturalism in England, 286; White of Selborne, 288; The Geological Society, 290; William Smith, 291; Charles Bell, 292; Historical Geography, 294; Martin William Leake, 296; Work of the three nations compared, 298.

CHAPTER IV.

THE ASTRONOMICAL VIEW OF NATURE.

The scientific spirit in the first and second half of the century, 302; Science become international, 303; Disappearance of national differences, 305; Special scientific ideas, 306; Philosophy of science, 306; Whewell's 'History' and 'Philosophy,' 309; Philosophy and science, 311; Leading scientific ideas mostly very ancient, 312; Mathematical spirit, 314; When first introduced into science, 317; Newton's 'Principia,' 318; The gravitation formula, 319; Lines of thought emanating from it, 321; Element of error, 323; Laplace and Newton, 326; Several interests which promote science, 326; Insufficiency of observation, 328; Practical interest, 328; Focalising effect of mathematical formulæ, 332; Matter and force mathematically defined, 334; Weight and mass, 336; Gravitation not an ultimate property of matter, 338; Attraction and repulsion, 342; Electrical and magnetic action, 344; Law of emanations, 344; Molecular action, 346; The astronomical view: Cosmical, molar, and molecular phenomena, 348; Special interest attached to molar dimensions, 350; Geometrical axioms, 352; Difficulty of measuring gravitation directly, 353; Astronomical view of molecular phenomena, 354; Capillary attraction, 356; Boscovich's extension of the Newtonian formula, 357; Coulomb's measurements, 360; Extended by Gauss and Weber, 360; Davy and Faraday, 363; Ampère and Weber develop the astronomical view, 366; Weber's fundamental measurements, 368; Necessity of developing the infinitesimal methods, 373; Newtonian formula the basis of physical astronomy, 375; The Newtonian formula unique as to universality and accuracy, 377; Is it an ultimate law? 378; Laplace's opinion, 378; Opposition to the astronomical view of nature, 381.

CHAPTER V.

THE ATOMIC VIEW OF NATURE.

Recapitulation, 382; Atomic theory, 385; Lavoisier, 386; Phlogistic theory, 388; Theory of combustion, 389; Rule of fixed proportions, 392; J. Benjamin Richter, 393; Dalton, 394; Berzelius, 396; Atomic theory and gravitation compared, 396; Wollaston's prophecy, 397; Rule of multiple proportions, 398; Equivalents, 399; "Simplex sigillum veri," 401; Prout's hypothesis, 402; Discovery of Isomerism, 405; Organic Chemistry, 407; Liebig's definition of same, 409; Type theory, 411; Uncertainty in chemical theory about middle of century, 413; Two aspects of the atomic theory, 415; A convenient symbolism, 417; Neglect of the study of affinity, 420; Kopp on chemical theory in 1873, 421: The periodic law, 422: Difference between chemical and physical reasoning, 424; The kinetic theory of gases, 425; Avogadro's hypothesis, 427; Neglect of same, 429; Development of the atomic view, 431; Pasteur's discovery of "Chirality," 431; Atom and molecule, 432; Joule's calculations, 434; Clausius's first memoir, 435; Internal energy of molecules, 436; The atomic theory accepted as a physical theory about 1860, 437; Clerk Maxwell: The statistical view of nature, 438; Doctrine of averages, 440; Geometrical arrangement of atoms, 441; Crystallography, 441; Analogy between crystallographic and atomic laws, 444; Isomorphism, 444; Polymorphism, 446; Structural and stereo-chemistry, 447; Valency, 447; Atomic linkage, 449; The carbon tetrahedron, 450; Defects and insufficiency of the atomic view, 451; Theories of chemical affinity, 452; Practical influences, 453; Change in definition of organic chemistry, 454; Criticisms of the atomic view, 455.