Contents

Prologue		1
1 (Can a computer have a mind? Introduction The Turing test Artificial intelligence An AI approach to 'pleasure' and 'pain' Strong AI and Searle's Chinese room Hardware and software	3 3 5 11 14 17 23
2 4	Algorithms and Turing machines Background to the algorithm concept Turing's concept Binary coding of numerical data The Church-Turing Thesis Numbers other than natural numbers The universal Turing machine The insolubility of Hilbert's problem How to outdo an algorithm Church's lambda calculus	30 30 35 42 47 49 51 57 64
3 N	Mathematics and reality The land of Tor'Bled-Nam Real numbers How many real numbers are there? 'Reality' of real numbers Complex numbers Construction of the Mandelbrot set Platonic reality of mathematical concepts?	74 74 80 82 86 87 92 94
4 T	Fruth, proof, and insight Hilbert's programme for mathematics Formal mathematical systems Gödel's theorem Mathematical insight Platonism or intuitionism? Gödel-type theorems from Turing's result Recursively enumerable sets Is the Mandelbrot set recursive? Some examples of non-recursive mathematics Is the Mandelbrot set like non-recursive mathematics? Complexity and computability in physical things	99 99 102 105 108 112 116 118 124 129 138 140

xii Contents

5	The classical world	149
	The status of physical theory	149
	Euclidean geometry	156
	The dynamics of Galileo and Newton	162
	The mechanistic world of Newtonian dynamics	167
	Is life in the billiard-ball world computable?	170
	Hamiltonian mechanics	174
	Phase space	176
	Maxwell's electromagnetic theory	184
	Computability and the wave equation	187
	The Lorentz equation of motion; runaway particles	188
	The special relativity of Einstein and Poincaré	191
	Einstein's general relativity	202
	Relativistic causality and determinism	211
	Computability in classical physics: where do we stand?	216
	Mass, matter, and reality	217
6	Quantum magic and quantum mystery	225
	Do philosophers need quantum theory?	225
	Problems with classical theory	228
	The beginnings of quantum theory	230
	The two-slit experiment	231
	Probability amplitudes	236
	The quantum state of a particle	243
	The uncertainty principle	248
	The evolution procedures U and R	250
	Particles in two places at once?	251
	Hilbert space	257
	Measurements	260
	Spin and the Riemann sphere of states	264
	Objectivity and measurability of quantum states	268
	Copying a quantum state	269
	Photon spin /	270
	Objects with large spin	273
	Many-particle systems	275
	The 'paradox' of Einstein, Podolsky, and Rosen	279
	Experiments with photons: a problem for relativity?	286
	Schrödinger's equation; Dirac's equation	288
	Quantum field theory	289
	Schrödinger's cat	290
	Various attitudes in existing quantum theory	293
	Where does all this leave us?	296
7	Cosmology and the arrow of time	302
	The flow of time	302
	The inexorable increase of entropy	304
	What is entropy?	309
	The second law in action	314
	The origin of low entropy in the universe	317
	Cosmology and the big bang	322

Contents	xiii
The primordial fireball Does the big bang explain the second law?	326 328
Black holes The structure of space—time singularities How special was the big bang?	330 335 339
8 In search of quantum gravity Why quantum gravity? What lies behind the Weyl curvature hypothesis?	348 348 350
Time-asymmetry in state-vector reduction Hawking's box: a link with the Weyl curvature hypothesis? When does the state-vector reduce?	354 359 367
9 Real brains and model brains What are brains actually like? Where is the seat of consciousness?	374 374 381
Split-brain experiments Blindsight Information processing in the visual cortex	384 386 387
How do nerve signals work? Computer models Brain plasticity	389 392 396
Parallel computers and the 'oneness' of consciousness Is there a role for quantum mechanics in brain activity? Quantum computers	398 400 401
Beyond quantum theory? 10 Where lies the physics of mind?	402
What are minds for? What does consciousness actually do? Natural selection of algorithms?	405 409 414
The non-algorithmic nature of mathematical insight Inspiration, insight, and originality Non-verbality of thought	416 418 423
Animal consciousness? Contact with Plato's world A view of physical reality	425 426 429
Determinism and strong determinism The anthropic principle Tilings and quasicrystals	431 433 434
Possible relevance to brain plasticity The time-delays of consciousness The strange role of time in conscious perception Conclusion: a child's view	437 439 442 447
Epilogue	451
References	
Index	