Contents

Preface and Acknowledgements

I The Basic Assumptions of Propositional Logic

A. What is Logic?
B. Propositions
1. Sentences, propositions, and truth
2. Other views of propositions
C. Words and Propositions as Types
D. Propositions in English
• Exercises for Sections A–D
E. Form and Content
F. Propositional Logic and the Basic Connectives
• Exercises for Sections E and F
G. A Formal Language for Propositional Logic
1. Defining the formal language
2. Realizations: semi-formal English
• Exercises for Section G

II Classical Propositional Logic

– PC –

Α.	Th	e Classical Abstraction and the Fregean Assumption	20
B.	Τn	uth-Functions and the Division of Form and Content	21
C.	Mo	odels 24	
• E:	xerc	vises for Sections A–C	25
D.	Va	lidity and Semantic Consequence	
	1.	Tautologies	26
	2.	Semantic Consequence	28
• E:	xerc	vises for Section D	31
E.	Th	e Logical Form of a Proposition	
	1.	On logical form	31
	2.	Criteria of formalization	32
	3.	Other propositional connectives	33
F.	Ex	amples of Formalization	
	1.	Ralph is a dog or Dusty is a horse and Howie is a cat	
		Therefore: Howie is a cat	34
	2.	Ralph is a dog and George is a duck and Howie is a cat	34

3. Ralph is a dog or he's a puppet	35
4. Ralph is a dog if he's not a puppet	35
5. Ralph is a dog although he's a puppet	35
6. Ralph is not a dog because he's a puppet	36
7. Three faces of a die are even numbered	
Three faces of a die are not even numbered	
Therefore: Ralph is a dog	36
8. Ken took off his clothes and went to bed	36
9. The quotation marks are signals for you to understand what I mean;	
they are not part of the realization	37
10. Every natural number is even or odd	37
11. If Ralph is a dog, then Ralph barks	
Ralph barks	
Therefore: Ralph is a dog	37
12. Suppose $\{s_n\}$ is monotonic. Then $\{s_n\}$ converges if and only if	
it is bounded	38
13. Dedekind's Theorem	38
• Exercises for Sections E and F	39
G. Further Abstractions: The Role of Mathematics in Logic	41
H. Induction 44	
• Exercises for Sections G and H	46
$\mathbf{I} \qquad \mathbf{A} \qquad \mathbf{M} \text{ athematical Presentation of } \mathbf{PC}$	10
1 The formal language	47
• Exercises for Section 11	50
2 Models and the semantic consequence relation	51
• Exercises for Section 12	52
3 The truth-functional completeness of the connectives	53
4 The choice of language for PC	55
5. Normal forms	55
6. The principle of duality for \mathbf{PC}	56
• Exercises for Sections I 3-16	57
7 The decidability of tautologies	58
• Exercises for Section 17	59
Some PC-tautologies	60
• Every set for Sections I 8	62
K Formalizing the Notion of Droof	02
1. Reasons for formalizing	62
2. Proof suptoring consequence and theories	64
2. Thom, syntactic consequence, and meeties	67
5. What is a logic?	60
• Exercises for Section \mathbf{R}	90
L. An Axiomalization of r C	60
1. The axiom system	09 11
• Exercises for Section L.1	/1
2. A completeness proof	- 12

	3. The Strong Completeness Theorem for PC
	• Exercises for Sections L.2 and L.3
	4. Derived rules: substitution
	• Exercises for Section L.4
M.	Other Axiomatizations and Proofs of Completeness of PC
	1. History and Post's proof
	2. A constructive proof of the completeness of PC
	• Exercises for Sections M.1 and M.2
	3. Schema vs. the rule of substitution
	4. Independent axiom systems
	5. Proofs using rules only
	Exercises for Sections M.3–M.5
	6. An axiomatization of PC in $L(\neg, \rightarrow, \land, \lor)$
	7. An axiomatization of PC in $L(\neg, \land)$
	• Exercises for Sections M.6 and M.7
	8. Classical logic without negation: the positive fragment of PC 85
	• Exercises for Section M.8
N.	The Reasonableness of PC
	1. Why classical logic is classical
	2. The paradoxes of PC

III Relatedness Logic: The Subject Matter of a Proposition – S and R –

Α.	An Aspect of Propositions: Subject Matter	. 93
В.	The Formal Language	. 96
С.	Properties of the Primitive: Relatedness Relations	. 96
D.	Subject Matter as Set-Assignments	. 99
• E	xercises for Sections A–D	101
E.	Truth and Relatedness-Tables	102
F.	The Formal Semantics for S	
	1. Models based on relatedness relations	104
	2. Models based on subject matter assignments	106
	3. Non-symmetric relatedness logic, \mathbf{R}	106
• E	xercises for Sections E and F	107
G.	Examples 107	
	1. If the moon is made of green cheese, then $2 + 2 = 4$	108
	2. $2 + 2 = 4$	
	<i>Therefore</i> : If the moon is made of green cheese, then $2 + 2 = 4$	108
	3. If Ralph is a dog and if $1 = 1$ then $1 = 1$, then $2 + 2 = 4$ or $2 + 2 \neq 4$	108
	4. If John loves Mary, then Mary has 2 apples	
	If Mary has 2 apples, then $2 + 2 = 4$	
	<i>Therefore</i> : If John loves Mary, then $2 + 2 = 4$	109

5. If Don squashed a duck and Don drives a car, then a duck is dead				
Therefore: If Don squashed a duck, then if Don drives a car,				
then a duck is dead				
• Exercises for Section G				
H. Relatedness Logic Compared to Classical Logic				
1. The decidability of relatedness tautologies				
2. Every relatedness tautology is a classical tautology				
3. Classical tautologies that aren't relatedness tautologies				
• Exercises for Section H				
J. Functional Completeness of the Connectives and the Normal Form				
Theorem for \mathbf{S}				
• Exercises for Section J				
K. Axiomatizations				
1. \mathbf{S} in $\mathbf{L}(\neg, \rightarrow)$				
• Exercises for Section K.1				
2. \mathbf{S} in $\mathbf{L}(\mathbf{n}, \mathbf{n}, \mathbf{n})$				
3. R in L(\neg , \rightarrow , \land)				
4. Substitution				
5. The Deduction Theorem				
• Exercises for Section K.2–K.5				
L. Historical Remarks				

IV A General Framework for Semantics for Propositional Logics

A. Aspects of Sentences	
1. Propositions	7
2. The logical connectives	9
3. Two approaches to semantics	9
• Exercises for Section A	0
B. Set-Assignment Semantics	
1. Models	0
• Exercises for Section B.1	4
2. Abstract models	5
3. Semantics and logics	6
4. Semantic and syntactic consequence relations	7
• Exercises for Sections B.2–B.4	9
C. Relation-Based Semantics	0
• Exercises for Section C	1
D. Semantics Having a Simple Presentation	1
E. Some Questions	
Q1. Simply presented semantics	3
Q2. The Deduction Theorem	3

	Q3. Functional completeness of the connectives	144			
	Q4. Representing the relations within the formal language	145			
	Q5. Characterizing the class of relations in terms of schema	145			
	Q6. Translating other semantics into the general framework	145			
	Q7. Decidability	146			
	Q8. Extensionally equivalent propositions and the rule of substitution	146			
F.	On the Unity and Division of Logics				
	1. Quine on deviant logical connectives	147			
	2. Classical vs. nonclassical logics	148			
G.	A Mathematical Presentation of the General Framework				
	with the assistance of Walter Carnielli				
	1. Languages	150			
	2. Formal set-assignment semantics	150			
	3. Formal relation-based semantics	151			
	• Exercises for Sections G.1–G.3				
	4. Specifying semantic structures	152			
	a. Set-assignments and relations for SA	153			
	b. Relations for <i>RB</i>	154			
	5. Wholly intensional connectives	154			
	6. Truth-default semantic structures	155			
	• Exercises for Sections G.4–G.6	156			
	7. Tautologies of the general framework	156			
	8. Valid deductions of the general framework				
	a. Examples	157			
	b. The subformula property	157			
	c. Axiomatizing deductions in $L(\neg, \rightarrow, \land)$	158			
	d. Deductions in lanaguages containing disjunction	160			
	• Exercises for Sections G.7–G.8	161			

V Dependence Logics

– D, Dual D, Eq, DPC –

А.	Dependence Logic						
	1. The consequent is contained in the antecedent	163					
	2. The structure of referential content	166					
	3. Set-assignment semantics	167					
	4. Relation-based semantics	170					
	• Exercises for Sections A.1–A.4	171					
	5. The decidability of dependence logic tautologies	171					
	6. Examples of formalization						
	1. Ari doesn't drink						
	Therefore: If Ari drinks, then everyone drinks	172					
	2. Not both Ralph is a dog and cats aren't nasty						
	Therefore: If Ralph is a dog, then cats are nasty	173					

3. If Ralph is a bachelor, then Ralph is a man	173
4. If dogs barks and Juney is a dog, then Juney barks	
Therefore: If dogs bark, then if Juney is a dog, then Juney barks	174
5. If dogs bark, then Juney barks	
If Juney barks, then a dog has scared a thief	
Therefore: If dogs bark, then a dog has scared a thief	174
6. If Ralph is a dog, then Ralph barks	
Therefore: If Ralph doesn't bark, then Ralph is not a dog	175
7. Ralph is not a dog because he's a puppet	175
7. Dependence logic tautologies compared to classical tautologies .	175
8. The functional completeness of the connectives	177
• Exercises for Sections A.5–A.8	177
9. An axioms system for D	178
• Exercises for Section A.9	181
10. History	182
B. Dependence-Style Semantics	183
• Exercises for Section B	184
C. Dual Dependence Logic, Dual D	185
• Exercises for Section C	187
D. A Logic of Equality of Contents, Eq	
1. Motivation	188
2. Set-assignment semantics	188
3. Characterizing Eq-relations	189
4. An axiom system for Eq	192
• Exercises for Section D	193
E. A Syntactic Comparison of D , Dual D , Eq , and S	194
F. Content as Logical Consequences	195
• Exercises for Section F	196

VI Modal Logics

- S4, S5, S4Grz, T, B, K, QT, MSI, ML, G, G* -

A. Implication, Possibility, and Necessity			
1. Strict implication vs. material implication	99		
2. Possible worlds	200		
3. Necessity	202		
4. Different notions of necessity: accessibility relations	202		
• Exercises for Section A	204		
B. The General Form of Possible-World Semantics for Modal Logics			
1. The formal framework	205		
2. Possibility and necessity in the formal language	208		
• Exercises for Section B	211		

C.	Semantic Presentations	
	1. Logical necessity: S5	
	a. Semantics	213
	b. Semantic consequence	214
	c. Iterated modalities	217
	d. Syntactic characterization of the class of universal frames	217
	e. Some rules valid in $S5$	219
	• Exercises for Section C.1	220
	2. K—all accessibility relations	220
	• Exercises for Section C.2	222
	3. T , B , and S4 \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots	222
	4. Decidability and the Finite Model Property	223
	• Exercises for Section C.4	225
D.	Examples of Formalization	225
	1. If roses are red, then sugar is sweet	226
	2. If Ralph is a bachelor, then Ralph is a man	226
	3. If the moon is made of green cheese, then $2 + 2 = 4$	226
	4. If Juney was a dog, then surely it's possible that Juney was a dog .	226
	5. If it's possible that Juney was a dog, then Juney was a dog	227
	6. It's not possible that Juney was a dog and a cat	228
	7. If it is necessary that Juney is a dog, then it is necessary that	
	it is necessary that Juney is a dog	228
	8. If this paper is white, it must necessarily be white	228
	9. If Hoover was elected president, then he must have received	
	the most votes	
	Hoover was elected president	
	<i>Therefore</i> : Hoover must have received the most votes	228
	10. A sea fight must take place tomorrow or not. But it is not	
	necessary that it should take place tomorrow; neither is it	
	it either should or should not take place. Tet it is necessary that	220
	11. It is contingent that US \$1 hills are green	229
	12. It is contingent that US \$1 bins are green	229
	12. It is possible for Kichard L. Epstein to print his own bank notes	230
	14. It is permissible but not obligatory to kill cate	230
	15. A dog that likes gate is possible	230
	16. Example 2 of Chapter II F is possible	231
	17 Ralph knows that Howie is a cat	231
	18 Example 18 is not possible	232
. т		232
• E		232
E.	Syntactic Characterizations of Modal Logics	
	1. Ine general format	000
	a. Defined connectives	233
	U. ruin the language of modal logic	255

c. Normal modal logics	234
2. Axiomatizations and completeness theorems in $L(\neg, \land, \Box)$	235
3. Axiomatizations and completeness theorems in $L(\neg, \rightarrow, \land)$	238
• Exercises for Sections E.1–E.3	239
4. Consequence relations	
a. Without necessitation, \vdash_L	240
b. With necessitation, $\vdash_{\mathbf{L}} \square$	242
• Exercises for Section E.4	242
F. Quasi-normal modal logics	243
\bullet Exercises for Section F $\hfill .$	244
G. Set-Assignment Semantics for Modal Logics	244
1. Semantics in $L(\neg, \rightarrow, \land)$	
a. Modal semantics of implication	245
b. Weak modal semantics of implication	247
2. Semantics in $L(\neg, \land, \Box)$	248
• Exercises for Sections G.1 and G.2	249
3. Connections of meanings in modal logics:	
the aptness of set-assignment semantics	249
4. S5	251
• Exercises for Section G.4	253
5. S4 in collaboration with Roger Maddux	254
• Exercises for Section G.5	255
6. T	257
7. B	258
• Exercises for Sections G.6 and G.7	259
H. The Smallest Logics Characterized by Various Semantics	
1. K	260
2. QT and quasi-normal logics	261
3. The logic characterized by modal semantics of implication	261
• Exercises for Section H	263
J. Modal Logics Modeling Notions of Provability	
1. ' \Box ' read as 'it is provable that'	263
2. S4Grz	265
3. G	266
4. G*	268

VII Intuitionism

,

– Int and J –

Α.	Intuitionism and Logic	•													272
• E	xercises for Section A .														275
В.	Heyting's Formalization of	of	Int	uit	ior	nis	m								
	1. Heyting's axiom syste	m	In	t											276
	2. Kripke semantics for	In	t.												277

• E	xercises for Section B	280
C.	Completeness of Kripke Semantics for Int	280
	1. Some syntactic derivations and the <i>Deduction Theorem</i>	281
	2. Completeness theorems for Int	283
	• Exercises for Sections C.1 and C.2	287
	3. On completeness proofs for Int, and an alternate axiomatization .	287
	• Exercises for Section C.3	288
D.	Translations and Comparisons with Classical Logic	
	1. Translations of Int into modal logic and classical arithmetic	288
	2. Translations of classical logic into Int	290
	3. Axiomatizations of classical logic relative to Int	294
• E	xercises for Section D	294
E.	Set-assignment Semantics for Int	295
	1. The semantics	296
	2. Observations and refinements of the set-assignment semantics	298
	• Exercises for Section E.1 and E.2	301
	3. Bivalence in intuitionism: the aptness of set-assignment semantics	302
F.	The Minimal Calculus J	
	1. The minimal calculus	304
	2. Kripke-style semantics	305
	3. An alternate axiomatization	307
	4. Kolmogorov's axiomatization of intuitionistic reasoning in $L(\neg, \rightarrow)$	308
	• Exercises for Sections F.1–F.4	309
	5. Set-assignment semantics	310
	• Exercises for Section F.5	312

VIII Many-Valued Logics

$-L_3, L_n, L_8, K_3, G_3, G_n, G_8, S5-$

A.	How Many Truth-Values?	
	1. History	314
	2. Hypothetical reasoning and aspects of propositions	315
В.	A General Definition of Many-Valued Semantics	316
C.	The Łukasiewicz Logics	318
	1. The 3-valued logic L_3	
	a. The truth-tables and their interpretation	319
	• Exercises for Section C.1.a	323
	b. A finite axiomatization of L_3	324
	• Exercises for Section C.1.b	328
	c. Wajsberg's axiomatization of L_3	328
	d. Set-assignment semantics for L_3	329
	• Exercises for Section C.1.d	331
	2. The logics L_n and L_{\aleph}	
	a. Generalizing the 3-valued tables	332

b. An axiom system for L_{\aleph}					-	•	333
c. Set-assignment semantics for L_{\aleph}							334
• Exercises for Section C.2							335
D. Kleene's 3-Valued Logic							
1. The truth-tables							336
2. Set-assignment semantics							338
• Exercises for Section D							339
E. Logics Having No Finite-Valued Semantics							
1. General criteria	۰.						339
2. Infinite-valued semantics for the modal logic S5							340
F. The Systems G_n and G_{\aleph}		•		•			341
• Exercises for Section F			•				344
G. A Method for Proving Axiom Systems Independent							344
• Exercises for Section G							346

IX Paraconsistent Logic: J₃

in collaboration with Itala M. L. D'Ottaviano

A. Paraconsistent Logics
B. The Semantics of J_3
1. Motivation
2. The truth-tables
• Exercises for Sections B.2
3. Definability of the connectives
C. The Relation Between J ₃ and Classical Logic
• Exercises for Section C
D Consistency vs. Paraconsistency
b; conclotency (b) a maconolotency
1. Definitions of completeness and consistency for J_3 theories 35
 Definitions of completeness and consistency for J₃ theories
 Definitions of completeness and consistency for J₃ theories
 Definitions of completeness and consistency for J₃ theories
 Definitions of completeness and consistency for J₃ theories
1. Definitions of completeness and consistency for J ₃ theories 35 2. The status of negation in J ₃ 36 E. Axiomatizations of J ₃ 36 1. As a modal logic 36 2. As an extension of classical logic 36 • Exercises for Section E 36
1. Definitions of completeness and consistency for J ₃ theories 35 2. The status of negation in J ₃ 36 E. Axiomatizations of J ₃ 36 2. As a modal logic 36 2. As an extension of classical logic 36 • Exercises for Section E 36 F. Set-Assignment Semantics for J ₃ 36
1. Definitions of completeness and consistency for J ₃ theories 35 2. The status of negation in J ₃ 36 E. Axiomatizations of J ₃ 36 1. As a modal logic 36 2. As an extension of classical logic 36 • Exercises for Section E 36 F. Set-Assignment Semantics for J ₃ 36 G. Truth-Default Semantics 37

X Translations Between Logics

Α.	Syntactic translations										
	in collaboration with Stanisław Krajewski										
	1. A formal notion of translation	375									
	• Exercises for Section A.1	377									
	2. Examples	377									

	• Exercises for Section A.2	381
	3. Logics that cannot be translated grammatically into classical logic	381
	• Exercises for Section A.3	384
	4. Translations where there are no grammatical translations:	
	$\mathbf{R} \hookrightarrow \mathbf{PC}$ and $\mathbf{S} \hookrightarrow \mathbf{PC}$	384
	• Exercises for Section A.4	388
В.	Semantically faithful translations	388
	1. A formal notion of semantically faithful translation	389
	• Exercises for Section B.1	392
	2. Examples of semantically faithful translations	393
	3. The archetype of a semantically faithful translation: Int \rightarrow S4	394
	4. The translations of PC into Int	395
	• Exercises for Section B.4	396
	5. The translation of S into PC \ldots \ldots \ldots \ldots \ldots \ldots	397
	6. Different presentations of the same logic and	
	strong definability of connectives	398
	• Exercises for Section B.6	399
	7. Do semantically faithful translations preserve meaning?	399

XI The Semantic Foundations of Logic

Concluding P	Philosophical	Remarks													401
--------------	---------------	---------	--	--	--	--	--	--	--	--	--	--	--	--	-----

Summary of Logics

А.	Classical Logic, PC	07
В.	Relatedness and Dependence Logics S, R, D, Dual D, Eq, DPC	-10
C.	Classical Modal Logics S4, S5, S4Grz, T, B, K, QT, MSI, ML, G, G*	17
D.	Intuitionistic Logics, Int and J	24
E.	Many-Valued Logics $L_3, L_n, L_N, K_3, G_3, G_n, G_N, Paraconsistent J_3 \dots \dots 4$	28
Bibliogra	<i>phy</i>	38
Glossary d	of Notation	51
Index of E	Examples	55
Index		58