TABLE OF CONTENTS

PREFACE	IX
TRANSLATOR'S PREFACE	XI
INTRODUCTION	XIII

CHAPTER 1 / LOCAL ISOMORPHISM AND LOGICAL FORMULA; LOGICAL RESTRICTION THEOREM

1.1. (k, p)-Isomorphism	1
1.2. (k, p)-Equivalence	6
1.3. Characteristic of a Logical Formula. Relations Between	
(k, p)-Isomorphism and Logical Formula	10
1.4. Logical Extension and Logical Restriction; Logical	
Restriction Theorem	14
1.5. Examples of Finitely-Axiomatizable and Non-Finitely-	
Axiomatizable Multirelations	18
1.6. (k, p) -Interpretability	20
1.7. Homogeneous and Logically Homogeneous Multirelations	23
1.8. Rigid and Logically Rigid Multirelations	24
Exercises	26

CHAPTER 2/LOGICAL CONVERGENCE; COMPACTNESS, OMISSION AND INTERPRETABILITY THEOREMS

2.1. Logical Convergence	30
2.2. Compactness Theorem	32
2.3. Omission Theorem	35
2.4. Interpretability Theorem	37
2.5. Every Injective Logical Operator is Invertible	41
Exercise	

CHAPTER 3 / ELIMINATION OF QUANTIFIERS

3.1.	Absolute Eliminant	46
3.2.	(k, p)-Eliminant	47
3.3.	Elimination Algorithms for the Chain of Rational Numbers	
	and the Chain of Natural Numbers	48
3.4.	Positive Dense Sum; Elimination of Quantifiers over the	
	Sum of Rational or Real Numbers	50
3.5.	Positive Discrete Divisible Sum; Elimination of	
	Quantifiers over the Sum of Natural Numbers	55
3.6.	Real Field; Elimination of Quantifiers over the Sum and	
	Product of Algebraic Numbers or Real Numbers	61
Exe	rcises	69
	CHAPTER 4/EXTENSION THEOREMS	
4.1.	Restrictive Sequence; (k, p) -Isomorphism and	70
	(k, p)-Identimorphism	
4.2.	Application to Logical Restriction	71
4.3.	Projection Filter	74
4.4.	Logical Extension Theorems	78
4.5.	Theorem on Common Logical Extensions	86
4.6.	Logical Morphism and Logical Embedding	88
Exe	rcises	90
	CHAPTER 5/THEORIES AND AXIOM SYSTEMS	
5.1.	Theory: Consistency; Intersection of Theories	93
5.2.	Axiom System. Class of Models; Union-Theory, Finitely-	
	Axiomatizable Theory, Saturated Theory	96
5.3.	Complement of a Theory	99
5.4.	Categoricity	101
5.5.	Model-Saturated Theory	106
Exe	rcises	110
ſ	THAPTER 6/PSEUDO-LOGICAL CLASS- INTERPRETABLL	ΓV
OF	THEORIES; EXPANSION OF A THEORY; AXIOMATIZABII	LITY

6.1.	Pseudo-Logical Class	112
6.2.	Interpretability of Theories	114

	TABLE OF CONTENTS	VII
6.3.6.4.6.5.	Canonical Expansion, Semantic Expansion, and Other Expansions Axiomatizable Multirelations and Theories Free Expansion	116 121 124
Exe	rcises	125
	CHAPTER 7 / ULTRAPRODUCT	
7.1.	Family of Multirelations, Ultrafilter, Induced Logical	
	Equivalence Class; Ultraproduct and Ultrapower; Maximal Case	127
7.2.	Logical Equivalence Implies the Existence of Isomorphic Ultrapowers	130
7.3.	Characterization of Logical Classes	135
7.4.	Normal Ultraproduct; Definitions and Examples	136
7.5. Exer	Normal Ultraproducts and Logical Equivalence recises	139
	CHAPIER 8/ FORCING	
8.1.	Generic Predicate; System; $(+)$ -Forced and $(-)$ -Forced	
	Formulas	144
8.2.	Elementary Properties	147
8.3.	Forcing with Constraints	148

8.4. General Relation1508.5. Forcing and Deduction; Theory Forced by a Generic
Predicate153Exercises157

CHAPTER 9/ISOMORPHISMS AND EQUIVALENCES IN RELATION TO THE CALCULUS OF INFINITELY LONG FORMULAS WITH FINITE QUANTIFIERS

9.1.	α -Isomorphism and α -Equivalence	158
9.2.	∞ -Isomorphism and ∞ -Equivalence; Karpian Families	161
9.3.	Automorphic Rank of a Multirelation	164
9.4.	Multirelations with Denumerable Bases and α -Isomorphisms	167

VIII	COURSE OF MATHEMATICAL LOGIC	
9.5. α-Extensi	on and α -Interpretability	171
9.6. Infinite L	ogical Calculi and their Relation to Local	
Isomorph	nisms and Equivalences	172
	APPENDIX	
Proof of Lemm	nas Needed to Prove J. Robinson's Theorem	179
Closure of a Relation		185
REFERENCES		188
INDEX		192