CONTENTS

														4	rage
	PREFAC	ε.	•••	•••	•	•	•	•	•	•	•	٠	•	•	vii
Chapte	r														
1.	W ну M	ETASCI	ENCE	· ·	•	•	•		•	•	•		•	•	3
	1. Pl	nilosop	hy ar	nd Sci	ienc	e	•	•	•		•	•	•	•	3
	2. Pl	nilosop	hy vs	. Scie	ence	•	•	•	•	•	•	•	•	•	6
	3. T	he Mai	in To	ols o	f th	e N	let.	asc	ier	ntis	t	•	•	•	10
	4. T	he Met	ascie	ntist'	s H	isto	oric	al	Sei	nsit	tivi	ity	•	•	12
	5. Sc	ience,	the H	luma	niti	es,	an	d t	he						
		Metaso	cienti	fic B	ridg	ge		•	•	•	•		•	•	17
	6. M	etascie	ntific	Stuc	lies	in	the	e T	ra	ini	ng				
		of Scie	ntists			•	•			•	•	•	•	•	21
	7. W	hy Me	tascie	nce?	•	•	•	•	•	•	•	•	•	•	25
2.	What i	s Scien	CE?		•	•	•	•	•	•	•	•	•	•	28
	1. In	troduc	tion	• •	•	•	•	•	•	•	•	•	•	•	28
	2. Fa	ictual a	nd F	orma	1 Sc	ien	ice	•	•		•		•		29
	3. A:	n Inver	ntory	of th	e M	[aiı	n F	'eat	tur	es					
		of Fact	tual S	sciend	ce	•	•	•	•	•	•	•	•	•	36
3.	WHAT I	s the N	Летн	OD OF	s Sc	IEN	CE	?	•	•	•	•	•	•	58
	1. Sc	ience:	Veri	fiable	e Kı	nov	vle	dge	2	•	•	•	•	•	58
	2. T	ruthful	ness	and V	Ver	ifia	bil	ity	•	•	•	•	•	•	61
	3. G	eneral	Verifi	iable	Ass	ert	ior	ıs:	Sc	ien	tif	ic			
		Hypoti	heses		•	•	•	•	•		•	•	•	•	63
	4. Sc	ientific	: Met	hod:	Ar	s Iı	nve	enie	enc	li?	•	•	•	•	66
	5. Sc	ientific	Met	hod:	Τe	ch	niq	ue	of						
		Appro	achin	g ano	d T	'est	ing	5	•	•	•	•	•	•	70
	6. T	he Exp	erime	ental	Me	the	bd	•	•	•	•	•	•	•	72

Chapter	Page
7.	Theoretical Models
8.	What Supports a Scientific Hypothesis 79
9.	Science: Technique and Art 81
10.	The Pattern of Scientific Research 83
11.	Extensibility of Scientific Method 86
12.	Scientific Method: Another Dogma? 88
4. WHA	AT IS THE MEANING OF 'SCIENTIFIC LAW'? 91
1.	Four Meanings of the Term 'Scientific Law'. 91
2.	A Nomenclature Proposed 92
3.	Illustrating the Distinctions
4.	Justifying the Distinction Between Laws
	and Law Statements
5.	Justifying the Need for the Remaining
	Distinctions
6.	Applying the Distinction Between Laws1 and
	Laws ₂ : Are Scientific Laws Necessary? 101
7.	Applying the Distinction Between Laws ₂ and
	Laws ₃ : Is Causality an Intrinsic Property of
	Laws? 104
8.	The Ideals of Science in Terms of the Various
	Levels of Meaning of 'Law' 106
5. Do 1	HE LEVELS OF SCIENCE REFLECT THE LEVELS
OF	Being?
1.	The Level Structure of Reality
2.	Emergence and Reduction
3.	Existence of Ontic Levels Suggested by
	Cognitive Levels
4.	Fluidity of Cognitive Levels as Contrasted
	with Stability of Ontic Levels 113
5.	Heteromorphism of Being and Knowing . 114
0.	

Chapter 1	°age
6. Reproduction of Material Levels on the	
Conceptual One	115
7. Origins of the Absence of Mirror-Like	
Correspondence	117
8. Stability of Ontic Levels as Conditions for	
Relative Closure of Cognitive Levels	119
9. Conclusions	122
6. Do Computers Think?	124
1. Introduction	124
2. Ideas and Their Physical Marks	126
3. Counting	129
4. Adding	131
5. Pythagorean Machines	134
6. Are Machines Aware?	136
7. Can Induction be Mechanised?	139
8. Do Machines Abstract?	141
9. Can Machines Outdo Their Designers?	143
10. Artificial Thought?	146
11. Metaphors and Their Misuse	148
12. Conclusions	151
7. Is Physics Reducible to Mechanics?	153
1. Context of the Problem	153
2. Formulation, Representation, and Interpreta-	
tion of a Physical Theory	154
3.' Illustrations of Proposed Structure of	
Physical Theories	157
Example I. Theory: classical analytical	
mechanics	157
Example II. Theory: classical electro-	
magnetism	159
5	

Chapter

Example III. Theory: quantum								
"mechanics" 159								
4. Advantages of Multiplicity of Formulations . 160								
5. Lagrangian Formulation: Applicable Irre-								
spective of Object's Nature								
6. The Contribution of the Lagrangian Method								
to the Decline of Mechanism 166								
7. Conclusions								
8. Is Complementarity the Final Interpretation								
ог Атоміс Рнузіся?								
1. Introduction								
2. What Is Complementary to What? 174								
3. Esse est Percipi								
4. Sozein ta Phainomena								
5. Objectivity and Invariance								
6. Are Atomic Phenomena Unanalysable? 189								
7. Hypotheses non Fingo								
8. Complementarity in Classical Physics? 198								
9. Is Complementarity the Only Possible								
Rational Interpretation?								
10. Conclusions								
9 Is THERE A CRISIS IN OHANTUM MECHANICS? 910								
J. Introduction 910								
2. Interpretations of the Dynamical Variables and Their Eigenvalues								
3. Interpretations of the Wave Function 222								
4. Interpretations of Heisenberg's Uncertainties . 232								
5. Nature of Microsystems								
6. How Many Interpretations are There? 246								
,,,,								

xiii

hapter	Page									
What is the Philosophy Behind the Space-Time-										
Approach to Quantum Electrodynamics? .	. 249									
1. Introduction	. 249									
2. Epistemology: A Function of Energy?	. 249									
3. Observables: Just a Subclass of Physical										
Entities	. 252									
4. Graphs: Lines or Trajectories?	. 256									
5. A Revival of Teleology?	. 258									
6. Is the S-Matrix Approach Consistent with a										
Space-Time Description?	. 260									
7. A Pragmatic View of Physics	. 262									
8. Any Physics Tomorrow?	. 264									
9. Conclusions	. 266									
Sources	. 269									
Index	. 271									