CONTENTS

		page 7
	PREFACE	
	INTRODUCTION	15
1	MOTION AND FORCE	
	Newton's Laws	19
	Gravity and Other Forces	23
	Momentum and Energy	25
	Collisions	31
	Angular Momentum	34
	Starting Conditions and Degrees of	
	Freedom	38
2	ELECTRICITY AND MAGNETISM	
	Coulomb's Law	41
	Lines of Force	45
	Field Laws or Action at a Distance	50
	Electromagnetism	52
	Induction. Generator and Transformer	57
	Completion of Laws	61
	Electromagnetic Waves	64
	Field Energy	68
3	LIGHT	
	Spectrum. Interference. Waves	70
	Diffraction, Polarization, Speed	75
	Light Consists of Electromagnetic Waves	78
	Emission Theory. Geometrical Optics	80
4	ATOMS AND ELECTRONS	
	Chemistry and the Atomic Hypothesis	87
	The Size of an Atom. Ions	90
	The Electron	93
	What are Atoms made of?	95
	Why Don't Atoms Collapse?	98
	Many Facts Can be Understood	99
5	ATOMS IN CROWDS: HEAT AS IRREGULAR MOTION	R
	Quantity of Heat. Heat and Disorder	102
	Heat and Atomic Motion	105
	Certainty and the Laws of Chance	109
	11	

UNIVERSITY OF OXFORD

	page
More Tests and Some Difficulties	112
Solids and Liquids	114
Radiant Heat	118

6	RELATIVITY	
	General Remarks	121
	Motion and Rest	123
	The Lorentz Contraction	125
	How to Compare Lengths and Times	128
	Composition of Velocities	133
	Mechanics of Fast-Moving Objects	134
	Applications and Confirmation	138
	Principle of Equivalence	141
	General Relativity	142
7	OUANTA. WAVES AND PARTICLES	
	The Quantum Hypothesis Photons	146
	Electron Diffraction Standing Wayes	152
	Variable Wavelenoth	157
	The Hydrogen Atom	161
	Particles and Wayes	164
	The Uncertainty Principle	169
8	THE BEHAVIOUR OF ATOMS	
	Hydrogen and Helium	177
	Other Light Atoms. The Exclusion Prin-	
	cinle	180
	Angular Momentum	183
	The Atomic Beam Experiment, Spin	189
	Electron Shells, Ionic Molecules	197
	Other Types of Molecules	196
	Solids Metals Liquids	199
	Passage Through a Potential Barrier	205
9	ELECTRONS AT HIGH SPEED	
-	Negative Energies A Difficulty	210
	Spin Positrons	.213
	Forces at High Speed More Difficulties	218
	New Methods. Lamb Shift	220
10	THE ATOMIC NUCLEUS	
10	Radioactivity Alpha Decay	225
	Wave Mechanics Solves Another	لملط
	Parador	220
	Splitting the Nucleus	223
	New Fairment	231
		نہ ل سکر

Neutrons. Isotopes. Mass Defect	237
Nuclear Forces	240
Shell Model. Excited States	244
Beta Rays	245
Fission. Sources of Energy	249

11 MESONS AND OTHER NEW PARTICLES

Cosmic Rays and Tools for their Study	255
Known Particles	259
Mesons	261
Yukawa. More Mesons	264
Beyond the Mesons. A New Chapter	
Opens	269

WHERE DO WE STAND? 273

INDEX

page

279