Analysis of Contents

PAGE

			PAGE
S	Ι.	Recent work in mathematics has shown a tendency towards rigour	
		of proof and sharp definition of concepts	Ie
S	2.	This critical examination must ultimately extend to the concept	
		of Number itself. The aim of proof	2 e
S.	3.	Philosophical motives for such an enquiry: the controversies as to	
- •	-	whether the laws of number are analytic or synthetic, a priori or	
		a posteriori. Sense of these expressions	ze
S	4.	Task of the present work	4 ^e
		I. Views of certain writers on the nature of arithmetical propositions.	
		Are numerical formulae provable?	
6	٢.	Kant denies this, which Hankel justly calls a paradox	٢e
ŝ	-	Leibniz's proof that $2 + 2 = 4$ contains a gap. Grassmann's	,
3		definition of $a + b$ is faulty	7 ^e
8	7.		
3	1-	observed facts, from which the calculations follow, is without	
		foundation	ge
6	8.	These definitions can be justified without any need of observing	9
3		his facts	11e
			A A *

4144	е.
7/11	~

Are the laws of arithmetic inductive truths?

PAGE

\$	9.	Mill's law of nature. In calling arithmetical truths laws of nature,	
		Mill is confusing them with their applications	1 2 ^e
S	10.	Grounds for denying that the laws of addition are inductive truths: numbers not uniform; the definition of number does not of itself yield any set of common properties of numbers; probably the reverse is true and induction should be based on	
		arithmetic	14 ^e
S	11.	Leibniz's term "innate"	17e
		Are the laws of arithmetic synthetic a priori or analytic?	
S	12.	Kant, Baumann, Lipschitz, Hankel. Inner intuition as the	
		ground of knowledge	17 ^e
S	13.	Distinction between arithmetic and geometry	19e
S	14.	Comparison between the various kinds of truths in respect of	
		the domains that they govern	200

S	12.	Kant, Baumann, Lipschitz, Hankel. Inner intuition as the	
		ground of knowledge	17 ^e
S	13.	Distinction between arithmetic and geometry	19e
S	14.	Comparison between the various kinds of truths in respect of	
		the domains that they govern	20 ^e
S	15.	Views of Leibniz and Jevons	21 ^e
S	16.	Against them, Mill's ridicule of the "artful manipulation of	
		language". Symbols are not empty simply because not meaning	
		anything with which we can be acquainted	22 ^e
S	17.	Inadequacy of induction. Conjecture that the laws of number	
		are analytic judgments; what in that case is their advantage.	
		Estimate of the value of analytic judgments	23 ⁸

II. Views of certain writers on the concept of Number.

S	18.	Necessity for an enquiry into the general concept of Number		24 ^e
S	19.	Its definition not to be geometrical		25e
S	20.	Is number definable? Hankel. Leibniz	•	26e

Is Number a property of external things?

S	21.	Views of M. Cantor and E. Schröder	27 ^e
S	22.	Opposite view of Baumann: external things present us with no	
		strict units. Number apparently dependent on our way of	
		regarding things	28e
S	23.	Mill's view untenable, that a number is a property of an	
		agglomeration of things	29e

viiie

			PAGE
S	24.	Wide range of applicability of number. Mill. Locke. Leibniz's	
		immaterial metaphysical figure. If number were something	
		sensible, it could not be ascribed to anything non-sensible .	30 ^e
S	25.	Mill's physical difference between 2 and 3. Number according	
		to Berkeley not really existent in things but created by the mind.	3 2 ^e
		Is number something subjective?	
s	26.	Lipschitz's description of the construction of numbers will not	
		do and cannot take the place of a definition of the concept	

		uo, and canno	take the	place	orau	emm	1011 0	u une	conce	-pr.	
		Number not an	object for	psych	ology,	but	somet	hing	object	ive	33 ^e
S	27.	Number is not	, as Schoen	nilch c	laims,	the	idea o	of the	posit	ion	
		of an item in a	series .	•	•	•			•	•	36e

The set theory of Number.

28.	Thomae's name-giving	٠	•	•	•	•	•	•	3 ^{8e}
-----	----------------------	---	---	---	---	---	---	---	-----------------

III. Views on unity and one.

Does the number word "one" express a property of objects?

S	29.	Ambiguity of the terms "µovás" and "unit". E. Schröder's	
		definition of the unit as an object to be numbered is apparently	
		pointless. The adjective "one" does not modify any description,	
		cannot serve as a predicate	39 ^e
S	30.	Attempts to define unity by Leibniz and Baumann seem to blur	
		the concept completely	41 ^e
S	31.	Baumann's criteria, being undivided and being isolated. Not	
		every object suggests to us the notion of unity (as Locke) .	41e
S	32.	Still, language does indicate some connexion with being un-	
		divided and isolated, with a shift of meaning however	42 ^e
S	33.	Indivisibility (G. Köpp) as a criterion of the unit is untenable.	43 ^e

Are units identical with one another?

S	34.	Identity	as	the	reason	for	the	name	"uni	ť".	E.	Sch	ıröde	r.
		Hobbes.	H	ume.	Thom	ae.	To a	bstract	from	the	diff	erer	nces o	of
things does not give us the concept of Number, nor does it make							ce							
		things id	ent	ical v	vith one	ano	ther		•	•				

44^e

10.0	Р
6.5	٣

			PAGE
S	35.	Indeed diversity is actually necessary, if we are to speak of	
		plurality. Descartes. E. Schröder. W. S. Jevons	46e
S	36.	The view that units are different also comes up against difficulties.	
		Different distinct ones in W. S. Jevons	46e
S	37.	Definitions of number in terms of the unit or one by Locke,	
		Leibniz and Hesse	48e
S	38.	"One" is a proper name, "unit" a general term. Number cannot	
		be defined as units. Distinction between "and" and $+$.	48e
S	39.	The difficulty of reconciling identity of units with distinguish-	•
		ability is concealed by the ambiguity of "unit"	50e

Attempts to overcome the difficulty.

S	40.	Space and time as means of distinguishing between units.	
		Hobbes. Thomae. Against them: Leibniz, Baumann, W. S.	
		Jevons	51e
S	41.	The goal is not achieved	53 ^e
S	42.	Position in a series as a means of distinguishing between units.	
		Hankel's putting	54 ^e
S	43.	Schröder's copying of objects by the symbol 1	54 ^e
S	44.	Jevons' abstraction from the character of the differences while	
		retaining the fact of their existence. 0 and 1 are numbers like	
		the rest. The difficulty still remains	55e

Solution of the difficulty.

S	45.	Recapitulation	. 58e
S	46.	A statement of number contains an assertion about a concept.	
		Objection that the number varies while the concept does not .	59 ^e
s	47.	That statements of number are statements of fact explained by	7
		the objectivity of concepts	60e
s	48.	Removal of certain difficulties	61e
S	49.	Corroboration found in Spinoza	62e
S	50.	E. Schröder's account quoted	62e
S	51.	Correction of the same	63e
Ś	52.	Corroboration found in a German idiom	64 ^e
S	53.	Distinction between component characteristics of a concept and	L
		its properties. Existence and number	64 ^e
S	54.	Unit the name given to the subject of a statement of number.	
		How indivisible and isolated. How identical and distinguish-	
		able	65e

IV. The concept of Number.

Every individual number is a self-subsistent object.

s	55.	Attempt to supplement the definitions of the individual numbers	•
		as given by Leibniz	67e
S	56.	The attempted definitions are unusable, because what they	
		define is a predicate in which the number is only an element .	67e
S	57.	A statement of number should be regarded as an identity	
		between numbers	68e
S	58.	Objection that we can form no idea of number as a self-subsistent	
		object. In principle number cannot be imagined	69e
S	59.	Because we cannot imagine an object, we are not to be debarred	
		from investigating it	70 ^e
S	60.	Even concrete things are not always imaginable. In seeking the	
		meaning of a word, we must consider it in the context of a	
		proposition	71e
S	61.	Objection that numbers are not spatial. Not every objective	
		object is spatial	72 ^e
	10	obtain the concept of Number, we must fix the sense of a numerical identity.	
s	62.	We need a criterion for numerical identity	73 ^e
s s	62. 63.		
		We need a criterion for numerical identity	
		We need a criterion for numerical identity	73 ^e
Š	63.	We need a criterion for numerical identity Possible criterion in one-one correlation. Logical doubt over defining identity specially for the case of numbers	73 ^e
Š	63.	We need a criterion for numerical identity Possible criterion in one-one correlation. Logical doubt over defining identity specially for the case of numbers Examples of similar procedures: direction of a line, orientation of a plane, shape of a triangle	73 ^e 73 ^e
s s	63. 64.	We need a criterion for numerical identity Possible criterion in one-one correlation. Logical doubt over defining identity specially for the case of numbers Examples of similar procedures: direction of a line, orientation of a plane, shape of a triangle	73 ^e 73 ^e
s s s	63. 64. 65. 66.	We need a criterion for numerical identity Possible criterion in one-one correlation. Logical doubt over defining identity specially for the case of numbers	73 ^e 73 ^e 74 ^e
s s	63. 64. 65.	We need a criterion for numerical identity Possible criterion in one-one correlation. Logical doubt over defining identity specially for the case of numbers Examples of similar procedures: direction of a line, orientation of a plane, shape of a triangle	73 ^e 73 ^e 74 ^e 76 ^e
s s s	63. 64. 65. 66. 67.	We need a criterion for numerical identity Possible criterion in one-one correlation. Logical doubt over defining identity specially for the case of numbers	73 ^e 73 ^e 74 ^e 76 ^e
s s s	 63. 64. 65. 66. 67. 68. 	We need a criterion for numerical identity Possible criterion in one-one correlation. Logical doubt over defining identity specially for the case of numbers Examples of similar procedures: direction of a line, orientation of a plane, shape of a triangle	73 ^e 73 ^e 74 ^e 76 ^e 77 ^e 78 ^e 79 ^e
5 5 5 5 5 5	63. 64. 65. 66. 67.	We need a criterion for numerical identity Possible criterion in one-one correlation. Logical doubt over defining identity specially for the case of numbers	73 ^e 73 ^e 74 ^e 76 ^e 77 ^e 78 ^e
5 5 5 5 5 5 5 5	 63. 64. 65. 66. 67. 68. 	We need a criterion for numerical identity Possible criterion in one-one correlation. Logical doubt over defining identity specially for the case of numbers Examples of similar procedures: direction of a line, orientation of a plane, shape of a triangle	73 ^e 73 ^e 74 ^e 76 ^e 77 ^e 78 ^e 79 ^e
5 5 5 5 5 5 5 5	 63. 64. 65. 66. 67. 68. 	We need a criterion for numerical identity Possible criterion in one-one correlation. Logical doubt over defining identity specially for the case of numbers Examples of similar procedures: direction of a line, orientation of a plane, shape of a triangle	73 ^e 73 ^e 74 ^e 76 ^e 77 ^e 78 ^e 79 ^e

§ 72. One-one relations. The concept of Number .

PAGE

84e

. . .

			PAGE
S	73.	The Number which belongs to the concept F is identical with	
		the Number which belongs to the concept G , if there exists a	
		relation which correlates one to one the objects falling under F	
		with those falling under G	85e
6		3	٥٦٠
S	74.	Nought is the Number which belongs to the concept "not	
-		identical with itself"	86e
S	75.	Nought is the Number which belongs to a concept under which	
		nothing falls. No object falls under a concept if nought is the	
		Number belonging to that concept	88e
8	76.	Definition of the expression "n follows in the series of natural	
5	'	numbers directly after m"	89e
0	77.	I is the Number which belongs to the concept "identical with o"	90e
	•••	Propositions to be proved by means of our definitions	
S	78.		91e
S	79 .	Definition of following in a series	92 ^e
S	80.	Comments on the same. Following is objective	92 ^e
S	81.	Definition of the expression "x is a member of the ϕ -series ending	
		with y"	94 ^e
8	82.	Outline of the proof that there is no last member of the series	
3		of natural numbers	0.46
6	0.		94 ^e
لا	83.	Definition of finite Number. No finite Number follows in the	
		series of natural numbers after itself	95 ^e

Infinite Numbers.

S	84.	The Number which belongs to the concept "finite Number" is an	
		infinite Number	96e
S	85.	Cantor's infinite Numbers; "power." Divergence in terminology	97 ^e
S	86.	Cantor's following in a succession and my following in a series	98e

V. Conclusion.

S	87.	Nature of the laws of arithmetic	99 ^e
S	88.	Kant's underestimate of the value of analytic judgments	99 ^e
S	89.	Kant's dictum: "Without sensibility no object would be given to	
		us." Kant's services to mathematics	101e
S	90.	For the complete proof of the analytic nature of the laws of	
		arithmetic we lack a flawless chain of deductions	102 ^e
S	91.	My concept writing makes it possible to supply this lack	103 ^e

Other numbers.

.

S	92.	The sense, according to Hankel, of asking whethe	r s	ome	
		number is possible	•		104 ^e
S	93.	Numbers are neither outside us in space nor subjective	•	•	105e
	В				

xie

	••-
	1 a U
~	4-

		$\times n^{\circ}$	
			PAGE
S	94·	That a concept is free from contradiction is no guarantee that	
		anything falls under it, and itself requires to be proved	105e
S	95.	We cannot regard $(c-b)$ without more ado as a symbol which	
		solves the problem of subtraction	106e
S	96.	Not even the mathematician can create things at will	107 ^e
S	97.	Concepts are to be distinguished from objects	108e
S	98.	Hankel's definition of addition	108e
S	99.	The formalist theory defective	109e
S	100.	Attempt to produce an interpretation of complex numbers by	
		extending the meaning of multiplication in some special way	110e
S	101.	The cogency of proofs is affected, unless it is possible to produce	
		such an interpretation	IIIe
S	102.	The mere postulate that it shall be possible to carry out some	
		operation is not the same as its own fulfilment.	IIIe
S	103.	Kossack's definition of complex numbers is only a guide	
-	•	towards a definition, and does not avoid the importation of foreign	
		elements. Geometrical representation of complex numbers	112 ^e
S	104.	What is needed is to fix the sense of a recognition-judgment for	
Č	•	the case of the new numbers	114 ^e
6	105.	The charm of arithmetic lies in its rationality	115e
			-119 ^e