CONTENTS

CHAPTER I

HISTORICAL INTRODUCTION (p. 1)

CHAPTER II

THE SCOPE OF PROBABILITY

§ 1. The meaning of chance		•	•	•	•	12
Chance and scientific method		•				12
The three fields of study		•	•		•	15
Chance in scientific observation .		•	•		•	16
§ 2. On the definition of probability .			•	•		17
The definition of mathematical probab	bility		•	•		17
Definition of statistical probability .	÷	•	•			18
A priori probability		•	•	•	•	19
Probability as a branch of logic .		•	•	•	. :	20
The principle of insufficient reason .		•	•	•	•	24
Other definitions of probability .		•	•	•	•	26
§ 3. Mathematical determinism .		•	•			33
The typical problem of mathematics.				•		34
The two classes of investigation .		•		•		36
The nature of mathematical determini	ism				. :	37

CHAPTER III

THE THEORY OF ARRANGEMENTS

The number of r -permutations	s of n	differer	nt obje	cts	•	. 4	41
The number of permutations o	f n obj	ects wł	nich are	e not all	differe	ent 4	1 2
The number of r -combinations	s of n	differer	nt obje	\mathbf{cts}		. 4	43
Stirling's Theorem .			•			. 4	14
The Binomial Theorem.	•					. 4	4 5
The Binomial coefficients		•				. 4	45
Greatest term in the expansion	\mathbf{n}					. 4	4 6
The Multinomial Theorem						. 4	1 6
The Binomial Series .		•				. 4	1 7
The number of homogeneous	produ	cts of	degree	r which	h can	be	
formed with n letters						. 4	1 7

CHAPTER IV

ELEMENTARY THEOREMS ON MATHEMATICAL PROBABILITY

The add	litio	n theo:	rem for pi	robał	oilities			•	•	49
Mathem	atic	al exp	ectation	•	•					50
Probabi	lity	that a	n member	of a	class is	not a	member	of a	sub-	
class					•					51

CONT	\mathbf{E}	Ν	т	s
------	--------------	---	---	---

The multiplication theorem	for pr	obabili	ties			•	51
Tchebycheff's problem .	•		•	•	•		53
Examples on Chapter IV	•	•	•	•	•		55

CHAPTER V

BERNOULLI'S THEOREM

§ 1. B	lernoulli's	B Theor	rem a	nd its	extense	ions				58
Bernou	ılli's Theo	orem fo	r a si	ngle su	belass	•				58
The pr	obability	that r	not m	ore tha	in <i>r</i> m	embers	belong	g to a s	sub-	
class	ι.	•	•	•	•	•	•	•	•	59
The pr	obability	that i	not le	ss thai	n r me	embers	belong	; to a s	sub-	
class		•	•	•		•	•	•	•	60
Note of	n termino	ology	•	•		•				60
Greates	st value o	of Bern	oulli's	s proba	bility					62
First g	eneralizat	ion of	Berno	ulli's '	Theore	m.	•			62
The av	erage val	ue of r	is als	o the r	nost p	robable	value			63
Case of	f probabil	ity va	rying	from o	ne tri	al to an	other		•	64
Second	generaliz	ation	of Ber	noulli'	s Theo	orem	•		•	64
§ 2. B	ernoulli's	Theor	em ar	nd the .	Norma	ıl Law	•		•	65
Proof o	of Stirling	's The	orem							65
Approx	kimate va	lue of	Berno	ulli's p	orobab	ility wh	p = p	= <u>1</u>		68
The Er	ror Func	tion	•	•		•	•		•	- 70
The ge	neral case)	•	•					•	70
Examp	les on Ch	apter '	V	•	•	•		•	•	73

CHAPTER VI

EXTENSION TO CONTINUOUS DISTRIBUTIONS

Definition of probabili	ty fo	or a cont	inuous	one-di	mensior	nal med	lium	75
Application to weight	ed p	robabili	ties	•	•			77
Extension to a continu	uous	two-dir	mensio	nal mee	lium		•	78
Discrete and continuo	us ei	ntitíes			•			79
Probability that a cha	ract	eristic is	s not p	resent i	n a give	on sam	ple.	80
The Random Walk	•	•	•	•	•	•	•	81
Illustrative examples		•	•	•	•	•		83
Buffon's problem	•	•	•	•	•			86
Examples on Chapter	VI	•	•	•	•	•		89

CHAPTER VII

THE THEORY OF ARRANGEMENTS (2)

Preliminary d	lefinitio	ons.		•	•	•	•	•	91
The number	of arra	ngemen	ts of <i>n</i>	differ	ənt obj	ects in	r or few	er	
groups .	•	•	•					. :	91
The number of	of arrai	ngemen	ts of n	differe	nt obje	cts in r	groups	. :	92
The case in w	hich ea	ach grou	up cont	ains at	least	s object	s.	. !	92
The number of	of arrai	ngemen	ts of n	identic	al obje	ets in 1	· parcels	. :	93

viii

.

CONTENTS		ix
The number of arrangements of n identical objects in r	or fow	э r
parcels	•	. 93
The case in which no parcel contains less than q objects	•	. 93
The number of arrangements of n different objects in r	or fewe	э r
groups when not all the objects need be used .	•	. 94
The number of arrangements of n different objects in r grou	ıps whe	m
not all the objects need be used	•	. 95
The number of arrangements in r indifferent groups		. 95
On the number of sets free from r specified letters .		. 96
The number of total derangements of n objects \cdot .		. 97
The number of arrangements of n different objects in r	or fewe	ər
parcels.		. 98
The number of arrangements of n different objects in r p	arcels	. 98
The number of arrangements of n identical objects in n	parce	ls
such that no parcel contains fewer than q or more than	a + t -	1
objects		. 98
Illustrative examples		99
Examples on Chapter VII	•	
	•	

CHAPTER VIII

THE EMPIRICAL THEORY OF DISTRIBUTIONS

§ 1. Hypothetical populations and	typical	constar	nts	•		102
Histograms	•					102
Frequency and probability curves						104
Empirical probability as a continuo	us funct	tion		•		105
On the meaning of 'population'	•	•	•	•		106
The application of statistical theory	• to phy	sical m	easure	ment		106
Typical constants for a finite set of	observa	tions	•			110
Note on 'average' and 'mean'						112
Significance of the standard deviation	on	•				113
Definition of weights	•	•	•	•		115
Typical constants for a continuous of	listribu	tion		•		115
Tchebycheff's Theorem	•	•				117
§ 2. The Gaussian Law .	•					118
First derivation of the Gaussian Law	N					118
Alternative derivation	•					121
Fundamental properties of the Erro	r Funct	ion	•			124
The probable error	•	•				126
Applications of the Normal Law		•	•		•	128
Accuracy of the Arithmetic Mean	•	•				129
The Random Walk in two dimension	. S	•			•	131
The Gaussian Law and experiment	•	•				133
The significance of deviations .	•	•	•	•	4	134
§ 3. Other forms of hypothetical pop	oulation	\$		•		135
Derivation of a sample from a kr	iown po	opulatio	on by	a give	\mathbf{n}	
selective process						135
The inverse problem	•	•	•			136

CONTENTS

The Hermite polynomials .	•	•	•	•	•	137
Standard deviation for Bernoullian	popula	tions	•	•		141
Bernoulli's Limit Theorem .	•	•	•	•	•	142
Poisson distributions	•	•	•	•	• '	142
The standard deviation for Poisson'	s Law	•	•		•	143
The telephone problem	•	•	•	•	•	144

CHAPTER IX

THE USE OF PROBABI	LITY]	IN SCI	[ENT]	FIC I	NDUC	TI	ON
§ 1. The general problem	•				•		146
Statement of the problem	•				•		146
Deduction of a sample from	a given	popula	ation c	of disco	ntinuo	us	
type				•			147
Derivation of a particular po	opulatio	n from	a san	ple by	a give	m	
selective process .	-						148
Examples		•	•		•	•	149
The Bernoullian law of selecti	ion		•				151
Bayes's Theorem for a discon	tinuous	distrib	ution	•	•	•	152
Examples	•	•	•	•		•	153
Extension to continuous distr	ibution	s	•		•	•	156
Applications		•	•				156
Two-dimensional distributions	8		•	•	•	•	160
§ 2. The determination of a p	opulatio	on from	a give	n set of	sample	28	164
On the determination of hypo	thetica	l popul	ations	•			164
The method of maximum like	lihood		•				165
Applications	•	•	•	•	•	•	166
The method of least squares			•	•		•	169
Determination of the precision	n consta	ant	•	•	•		170
Curve fitting		•	•				171
The line of regression .	•	•	•	•	• •	•	172
The coefficient of linear correl	ation	•	•	•		•	174
Parabolic correlation .		•	•	•	•	•	175
The method of maximum corr	relation		•	•	•	•	176
Linear correlation in general	•	•	•	•	•	•	178
The Gaussian Law for two va	riables :	correla	ation	•	•	•	180
Tests of significance for small	sample	s	•	•	•	•	184
Other tests of significance	•	•	•	•	•		189
Examples on Chapter IX	•	•	•	•	•	•	194
ADDENDIV, Table of the I			-				100
ALLENDIA: LADIE OF THE L	MILOL L	unction	1	•	•	•	190
INDEX	•	•	•	•	•	•	199

x