Contents

The Search for Philosphic Understanding of Scientific Theories

FREDERICK SUPPE

Introduction 3

I. Historical Background to the Received View 6

II. Development of the Received View 16
 A. Correspondence Rules and Cognitive Significance 17
 B. Interpretation of Theories: The Status of Theoretical Terms 27
 C. Logic of the Conditional 36
 D. Observational-Theoretical Distinction 45
 E. Final Version of the Received View 50
 F. Development of Science on the Received View: Theory Reduction 53

III. Status of the Received View 57

IV. Criticism of the Received View 62
 A. How Adequate Is the Received View as a General Analysis of Scientific Theories? 62
 B. Observational-Theoretical Distinction 66
 1. Analytic-Synthetic Distinction 67
 2. Observational-Theoretical Term Distinction 80
 C. Partial Interpretation 86
 D. Models 95
 E. Correspondence Rules 102
 F. Formalization Issues 110
 G. Conclusions on the Adequacy of the Received View 115

V. Alternatives to the Received View and Their Critics 119
 A. Skeptical Descriptive Analyses 120
 B. Weltanschauungen Analyses 125
 1. The Positions and Criticisms Specific to Them 127
 (a) Toulmin 127
 (b) Kuhn 135
 (c) Hanson 151
Proceedings of the Symposium

SESSION I

Formulation and Formalization of Scientific Theories: A Summary-Abstract, Carl G. Hempel 244
Discussion 255

SESSION II

The Structure of Theories and the Analysis of Data, Patrick Suppes 266
1. Deterministic Theories with Incorrigible Data 266
2. Deterministic Theories with Corrigible Data 271
3. Probabilistic Theories with Incorrigible Data 273
4. Probabilistic Theories with Corrigible Data 278
5. Some Philosophical Conclusions 281
Commentary on Suppes’s “The Structure of Theories and the Analysis of Data” 284
Discussion 289

SESSION III

History and the Philosopher of Science, I. Bernard Cohen 308
1. Introduction 308
2. Galileo and the Science of Motion 315
3. ‘Transformations’ in the Development of Science: The Concepts of ‘Inertia’ and ‘State of Motion’ 321
4. Newtonian Dynamics: The Second Law of Motion 327
5. Ambiguous History: Texts and References 335
6. Conclusion: The Philosopher vs. the Historian 344

History and Philosophy of Science: A Reply to Cohen, Peter Achinstein 350
Discussion 361

SESSION IV

Science as Perception-Communication, David Bohm 374
Professor Bohm’s View of the Structure and Development of Theories, Robert L. Causey 392
Reply to Professor Causey, Jeffrey Bub 402
Discussion 409
Reply to Discussion, David Bohm 420

SESSION V

Hilary Putnam’s ‘Scientific Explanation’. An Editorial Summary-Abstract 424
Putnam on the Corroboration of Theories, Bas C. van Fraassen 434
Discussion 437

SESSION VI

Second Thoughts on Paradigms, Thomas S. Kuhn 459
Exemplars, Theories, and Disciplinary Matrixes, Frederick Suppe 483
Discussion 500

SESSION VII

Scientific Theories and Their Domains, Dudley Shapere 518
I. Framework of the Present Analysis 518
II. Aspects of the Concept of a Domain 525
III. Theoretical Problems, Lines of Research, and Scientific Theories 533
1. The Periodic Table of Chemical Elements 534
2. Spectroscopy 542
3. Stellar Spectral Classification and Stellar Evolution 549
IV. Theoretical Inadequacies and Their Treatment 557
1. Inadequacies of the Bohr Theory 558
 A. Incompleteness 558
 B. Simplification 560
 C. Structure 562
2. Treatment of Inadequacies in the Bohr Theory 562

Editorial Interpolation: Shapere on the Instrumentalist vs. Realistic Conceptions of Theories 566