Introduction to

higher order categorical logic

J. LAMBEK McGill University P. J. SCOTT University of Ottawa

Contents

	Preface	
Part 0	Introduction to category theory	
	Introduction to Part 0	3
1	Categories and functors	4
2	Natural transformations	8
3	Adjoint functors	12
4	Equivalence of categories	16
5	Limits in categories	19
6	Triples	27
7	Examples of cartesian closed categories	35
Part I	Cartesian closed categories and λ -calculus	
	Introduction to Part I	41
	Historical perspective on Part I	42
1	Propositional calculus as a deductive system	47
2	The deduction theorem	50
3	Cartesian closed categories equationally presented	52
4	Free cartesian closed categories generated by graphs	55
5	Polynomial categories	57
6	Functional completeness of cartesian closed categories	59
7	Polynomials and Kleisli categories	62
8	Cartesian closed categories with coproducts	65
9	Natural numbers objects in cartesian closed categories	68
10	Typed λ-calculi	72
11	The cartesian closed category generated by a typed λ -calculus	77
12	The decision problem for equality	81
13	The Church-Rosser theorem for bounded terms	84
14	All terms are bounded	88
15	C-monoids	93
16	C-monoids and cartesian closed categories	98
17	C-monoids and untyped λ -calculus	101
18	A construction by Dana Scott	107
	Historical comments on Part I	114

Part II	Type theory and toposes	
	Introduction to Part II	123
	Historical perspective on Part II	124
1	Intuitionistic type theory	128
2	Type theory based on equality	133
3	The internal language of a topos	139
4	Peano's rules in a topos	145
5	The internal language at work	148
6	The internal language at work II	153
7	Choice and the Boolean axiom	160
8	Topos semantics	164
9	Topos semantics in functor categories	169
10	Sheaf categories and their semantics	177
11	Three categories associated with a type theory	186
12	The topos generated by a type theory	189
13	The topos generated by the internal language	193
14	The internal language of the topos generated	196
15	Toposes with canonical subobjects	200
16	Applications of the adjoint functors between toposes and type	
	theories	205
17	Completeness of higher order logic with choice rule	212
18	Sheaf representation of toposes	217
19	Completeness without assuming the rule of choice	223
20	Some basic intuitionistic principles	226
21	Further intuitionistic principles	231
22	The Freyd cover of a topos	237
	Historical comments on Part II	244
	Supplement to Section 17	250
Part III	Representing numerical functions in various categories	
	Introduction to Part III	253
1	Recursive functions	253
2	Representing numerical functions in cartesian closed categories	257
. 3	Representing numerical functions in toposes	264
4	Representing numerical functions in C-monoids	271
	Historical comments on Part III	277
Bibliography		279
Author index		289
Subject index		291