Bertrand Russell **Principles of Mathematics** ## **CONTENTS** | INT | RODU | iction to the 1992 edition | xxv | |-----|--------|---|--------| | INT | RODU | ICTION TO THE SECOND EDITION | xxxi | | PRE | FACE | | xliii | | | | | | | PAR | RT I T | HE INDEFINABLES OF MATHEMATICS | 1 | | 1 | Defi | nition of Pure Mathematics | 3 | | | 1. | Definition of pure mathematics | 3 | | | 2. | The principles of mathematics are no longer | , | | | | controversial | 3 | | | 3. | Pure mathematics uses only a few notions, | | | | | and these are logical constants | 4 | | | 4. | All pure mathematics follows formally from | | | | | twenty premisses | 4 | | | 5. | Asserts formal implications | 5 | | | 6. | And employs variables | 5
6 | | | 7. | Which may have any value without exception | 6 | | | 8. | Mathematics deals with types of relations | 7 | | | 9. | Applied mathematics is defined by the | | | | | occurrence of constants which are not logical | 8 | | | 10. | Relation of mathematics to logic | 8 | | 2 | Sym | bolic Logic | 10 | | | 11. | Definition and scope of symbolic logic | 10 | | | 12. | The indefinables of symbolic logic | 11 | | | 12. | Symbolic logic consists of three parts | 12 | | | A. The Propositional Calculus | 13 | |-------------|--|----------| | 14. | Definition | 13 | | 15. | Distinction between implication and formal | | | | implication | 14 | | 16. | Implication indefinable Two indefinables and ten primitive | 14 | | 17. | propositions in this calculus | 15 | | 18. | The ten primitive propositions | ני
16 | | 19. | Disjunction and negation defined | 17 | | | | | | | B. The Calculus of Classes | 18 | | 20. | Three new indefinables | 18 | | 21. | The relation of an individual to its class | 19 | | 22. | Propositional functions | 19 | | 23. | The notion of such that | 20 | | 24. | Two new primitive propositions | 20 | | 25. | Relation to propositional calculus | 21 | | 26. | Identity | 23 | | | C. The Calculus of Relations | 23 | | 27. | The logic of relations essential to mathematics | 23 | | 28. | New primitive propositions | 24 | | 29. | Relative products | 25 | | 30. | Relations with assigned domains | 26 | | | D. Peano's Symbolic Logic | 27 | | 31. | Mathematical and philosophical definitions | 27 | | 32. | Peano's indefinables | 27 | | 33. | Elementary definitions | 28 | | 34. | Peano's primitive propositions | 30 | | 35. | Negation and disjunction | 31 | | 36. | Existence and the null-class | 32 | | • | lication and Formal Implication | 34 | | 37. | Meaning of implication | 34 | | 38. | Asserted and unasserted propositions | 35 | | 39.
40. | Inference does not require two premisses Formal implication is to be interpreted | 37 | | 4 0. | extensionally | 37 | | | CAUCITATORIUM | 3/ | | | | CONTENTS | |------|--|----------| | 41. | The variable in a formal implication has an | | | • | unrestricted field | 37 | | 42. | A formal implication is a single | 2. | | • | propositional function, not a relation of two | 39 | | 43. | Assertions | 40 | | 44. | Conditions that a term in an implication | | | | may be varied | 40 | | 45. | Formal implication involved in rules | | | | of inference | 41 | | Pro | per Names, Adjectives and Verbs | 43 | | 46. | Proper names, adjectives and verbs | ., | | | distinguished | 43 | | 47. | Terms | 44 | | 48. | Things and concepts | 45 | | 49. | Concepts as such and as terms | 46 | | 50. | Conceptual diversity | 47 | | 51. | Meaning and the subject-predicate logic | 48 | | 52. | Verbs and truth | 49 | | 53. | All verbs, except perhaps is, express relations | 50 | | 54. | Relations per se and relating relations | 50 | | 55. | Relations are not particularized by their terms | 51 | | Den | oting | 54 | | 56. | Definition of denoting | 54 | | 57. | Connection with subject-predicate | | | | propositions | 55 | | 58. | Denoting concepts obtained from predicates | 56 | | 59. | Extensional account of all, every, any, a and some | 57 | | 60. | Intensional account of the same | , 59 | | 61. | Illustrations | 60 | | 62. | The difference between all, every, etc. lies in | | | | the objects denoted, not in the way of | | | | denoting them | 63 | | 63. | The notion of the and definition | 64 | | 64. | The notion of the and identity | 65 | | 65. | Summary | 66 | | Clas | | 67 | | 66. | | | | | standpoints required | 67 | | 67. | Meaning of class | 68 | | 68. | Intensional and extensional genesis of class | 68 | vii ## VIII CONTENTS | 69. | Distinctions overlooked by Peano | 69 | |------|---|--| | 70. | The class as one and as many | 69 | | 71. | The notion of and | 70 | | 72. | All men is not analysable into all and men | 73 | | 73. | There are null class-concepts, but there is | | | | no null-class | 74 | | 74. | The class as one, except when it has one | | | | term, is distinct from the class as many | 77 | | 75. | Every, any, a and some each denote one | | | | | 77 | | 76. | | 78 | | 77. | | 79 | | 78. | | 80 | | 79. | Summary | 81 | | Pro | positional Functions | 82 | | 8o. | Indefinability of such that | 82 | | 81. | Where a fixed relation to a fixed term is | | | | asserted, a propositional function can be analysed | | | | into a variable subject and a constant assertion | 83 | | 82. | But this analysis is impossible in other cases | 84 | | 83. | Variation of the concept in a proposition | 86 | | 84. | Relation of propositional functions to classes | 88 | | 85. | A propositional function is in general not | | | | analysable into a constant and a variable element | 88 | | The | Variable | 89 | | 86. | Nature of the variable | 89 | | 87. | Relation of the variable to any | 89 | | 88. | Formal and restricted variables | 91 | | 89. | Formal implication presupposes any | 91 | | 90. | Duality of any and some | 92 | | 91. | The class-concept propositional function is | | | | indefinable | 93 | | 92. | Other classes can be defined by means of | | | | such that | 93 | | 93. | Analysis of the variable | 93 | | Rela | tions | 95 | | 94. | Characteristics of relations | 95 | | 95. | Relations of terms to themselves | 96 | | 96. | The domain and the converse domain of a | - | | - | relation | 97 | | | 70. 71. 72. 73. 74. 75. 76. 77. 78. 79. Proj 80. 81. 82. 83. 84. 85. The 86. 87. 88. 90. 91. 92. 93. Rela 94. 95. | 70. The class as one and as many 71. The notion of and 72. All men is not analysable into all and men 73. There are null class-concepts, but there is no null-class 74. The class as one, except when it has one term, is distinct from the class as many 75. Every, any, a and some each denote one object, but an ambiguous one 76. The relation of a term to its class 77. The relation of inclusion between classes 78. The contradiction 79. Summary Propositional Functions 80. Indefinability of such that 81. Where a fixed relation to a fixed term is asserted, a propositional function can be analysed into a variable subject and a constant assertion 82. But this analysis is impossible in other cases 83. Variation of the concept in a proposition 84. Relation of propositional functions to classes 85. A propositional function is in general not analysable into a constant and a variable element The Variable 86. Nature of the variable 87. Relation of the variable to any 88. Formal and restricted variables 89. Formal implication presupposes any 90. Duality of any and some 91. The class-concept propositional function is indefinable 92. Other classes can be defined by means of such that 93. Analysis of the variable Relations 94. Characteristics of relations 95. Relations of terms to themselves 96. The domain and the converse domain of a | Theory of Finite Numbers propositions 120. Peano's indefinables and primitive 121. Mutual independence of the latter 14 ix 125 125 #### X CONTENTS | | 122. Peano really defines progressions, not finite | _ | |----|---|------------| | | numbers | 126 | | | 123. Proof of Peano's primitive propositions | 128 | | 15 | Addition of Terms and Addition of Classes | 130 | | | 124. Philosophy and mathematics distinguished | 130 | | | 125. Is there a more fundamental sense of | | | | number than that defined above? | 131 | | | 126. Numbers must be classes | 132 | | | 127. Numbers apply to classes as many | 133 | | | 128. One is to be asserted, not of terms, but of | | | | unit classes | 133 | | | 129. Counting not fundamental in arithmetic | 134 | | | 130. Numerical conjunction and plurality 131. Addition of terms generates classes | 135 | | | primarily, not numbers | 136 | | | 132. A term is indefinable, but not the number 1 | 136 | | | | | | 16 | Whole and Part | 138 | | | 133. Single terms may be either simple or complex | 138 | | | 134. Whole and part cannot be defined by | 0 | | | logical priority 135. Three kinds of relation of whole and part | 138 | | | distinguished | 139 | | | 136. Two kinds of wholes distinguished | 141 | | | 137. A whole is distinct from the numerical | 14. | | | conjunction of its parts | 142 | | | 138. How far analysis is falsification | 142 | | | 139. A class as one is an aggregate | 143 | | 17 | Infinite Wholes | 144 | | 17 | 140. Infinite aggregates must be admitted | 144 | | | 141. Infinite unities, if there are any, are unknown to us | 145 | | | 142. Are all infinite wholes aggregates of terms? | 147 | | | 143. Grounds in favour of this view | 147 | | .0 | Ratios and Fractions | | | 18 | 144. Definition of ratio | 150 | | | 145. Ratios are one-one relations | 150
151 | | | 146. Fractions are concerned with relations of | יכי | | | whole and part | 151 | | | 147. Fractions depend, not upon number, but | ٠,ر٠ | | | upon magnitude of divisibility | 152 | | | 148. Summary of Part II | 153 | | PAR | T III QUANTITY | 155 | |-----|---|-----| | 19 | The Meaning of Magnitude
149. Previous views on the relation of number | 157 | | | and quantity | 157 | | | 150. Quantity not fundamental in mathematics | 158 | | | 151. Meaning of magnitude and quantity | 159 | | | 152. Three possible theories of equality to be | | | | examined | 159 | | | 153. Equality is not identity of number of parts | 160 | | | 154. Equality is not an unanalysable relation of | | | | quantities | 162 | | | 155. Equality is sameness of magnitude | 164 | | | 156. Every particular magnitude is simple | 164 | | | 157. The principle of abstraction | 166 | | | 158. Summary | 167 | | | Note | 168 | | 20 | The Range of Quantity | 170 | | | 159. Divisibility does not belong to all quantities | 170 | | | 160. Distance | 171 | | | 161. Differential coefficients | 173 | | | 162. A magnitude is never divisible, but may be a | | | | magnitude of divisibility | 173 | | | 163. Every magnitude is unanalysable | 174 | | 21 | Numbers as Expressing Magnitudes: Measurement | 176 | | | 164. Definition of measurement | 176 | | | 165. Possible grounds for holding all magnitudes | | | | to be measurable | 177 | | | 166. Intrinsic measurability | 178 | | | 167. Of divisibilities | 178 | | | 168. And of distances | 180 | | | 169. Measure of distance and measure of stretch | 181 | | | 170. Distance-theories and stretch-theories of | _ | | | geometry | 181 | | | 171. Extensive and intensive magnitudes | 182 | | 22 | Zero | 184 | | | 172. Difficulties as to zero | 184 | | | 173. Meinong's theory | 184 | | | 174. Zero as minimum | 185 | | | 175. Zero distance as identity | 186 | | | 176. Zero as a null segment | 186 | ### XII CONTENTS | | 177. Zero and negation
178. Every kind of zero magnitude is in a sense | 187 | |-----|---|------------| | | indefinable | 187 | | 23 | Infinity, the Infinitesimal and Continuity | 189 | | - | 179. Problems of infinity not specially quantitative | 189 | | | 180. Statement of the problem in regard to quantity | 189 | | | 181. Three antinomies | 190 | | | 182. Of which the antitheses depend upon an | | | | axiom of finitude | 191 | | | 183. And the use of mathematical induction | 193 | | | 184. Which are both to be rejected | 193 | | | 185. Provisional sense of continuity | 194 | | | 186. Summary of Part III | 195 | | PAR | T IV ORDER | 199 | | 24 | The Genesis of Series | 201 | | | 187. Importance of order | 201 | | | 188. Between and separation of couples | 201 | | | 189. Generation of order by one-one relations | 202 | | | 190. By transitive asymmetrical relations | 205 | | | 191. By distances | 206 | | | 192. By triangular relations | 206 | | | 193. By relations between asymmetrical relations | 207 | | | 194. And by separation of couples | 207 | | 25 | The Meaning of Order | 209 | | | 195. What is order? | 209 | | | 196. Three theories of between | 209 | | | 197. First theory | 210 | | | 198. A relation is not between its terms | 212 | | | 199. Second theory of between | 213 | | | 200. There appear to be ultimate triangular | | | | relations | 214 | | | 201. Reasons for rejecting the second theory 202. Third theory of <i>between</i> to be rejected | 215 | | | · | 215 | | | 203. Meaning of separation of couples 204. Reduction to transitive asymmetrical relations | 216
217 | | | 205. This reduction is formal | 21/ | | | 206. But is the reason why separation leads to | 210 | | | order | 218 | | | 01401 | 210 | | | | CONTENTS | xiii | |----|---|------------|------| | | 207. The second way of generating series is alone fundamental, and gives the meaning of order | 218 | | | 26 | Asymmetrical Relations 208. Classification of relations as regards | 220 | | | | symmetry and transitiveness | 220 | | | | 209. Symmetrical transitive relations 210. Reflexiveness and the principle of | 221 | | | | abstraction | 221 | | | | 211. Relative position | 222 | | | | 212. Are relations reducible to predications? | 223 | | | | 213. Monadistic theory of relations | 224 | | | | 214. Reasons for rejecting this theory215. Monistic theory and the reasons for | 224 | | | | rejecting it
216. Order requires that relations should be | 226 | | | | ultimate | 228 | | | 27 | Difference of Sense and Difference of Sign | 229 | | | | 217. Kant on difference of sense | 229 | | | | 218. Meaning of difference of sense | 230 | | | | 219. Difference of sign | 230 | | | | 220. In the cases of finite numbers | 231 | | | | 221. And of magnitudes | 231 | | | | 222. Right and left | 233 | | | | 223. Difference of sign arises from difference of sense among transitive asymmetrical relations | 234 | | | 28 | On the Difference Between Open and Closed Series 224. What is the difference between open and | 236 | | | | closed series? | 236 | | | | 225. Finite closed series | 236 | | | | 226. Series generated by triangular relations | 238 | | | | 227. Four-term relations 228. Closed series are such as have an arbitrary | 239 | | | | first term | 240 | | | 29 | Progressions and Ordinal Numbers | 241 | | | | 229. Definition of progressions | 241 | | | | 230. All finite arithmetic applies to every progression | 242 | | | | 231. Definition of ordinal numbers | 242
244 | | | | 231. Definition of ordinal numbers 232. Definition of "nth" | 244
245 | | | | 233. Positive and negative ordinals | 246 | | | | | | | ### XIV CONTENTS | 30 | Dedekind's Theory of Number | 247 | |-----|--|-----| | | 234. Dedekind's principal ideas | 247 | | | 235. Representation of a system | 247 | | | 236. The notion of a <i>chain</i> | 248 | | | 237. The chain of an element | 248 | | | 238. Generalized form of mathematical induction | 248 | | | 239. Definition of a singly infinite system | 249 | | | 240. Definition of cardinals | 249 | | | 241. Dedekind's proof of mathematical induction | 250 | | | 242. Objections to his definition of ordinals | 250 | | | 243. And of cardinals | 251 | | 31 | Distance | 254 | | - | 244. Distance not essential to order | 254 | | | 245. Definition of distance | 259 | | | 246. Measurement of distances | 256 | | | 247. In most series, the existence of distances is | | | | doubtful | 256 | | | 248. Summary of Part IV | 257 | | | DT W INCOMEN AND CONTINUED | | | PAI | RT V INFINITY AND CONTINUITY | 259 | | 32 | The Correlation of Series | 261 | | | 249. The infinitesimal and space are no longer | | | | required in a statement of principles | 261 | | | 250. The supposed contradictions of infinity have | | | | been resolved | 262 | | | 251. Correlation of series | 262 | | | 252. Independent series and series by correlation | 264 | | | 253. Likeness of relations | 264 | | | 254. Functions | 265 | | | 255. Functions of a variable whose values form a | | | | series | 266 | | | 256. Functions which are defined by formulae | 269 | | | 257. Complete series | 271 | | 33 | Real Numbers | 272 | | | 258. Real numbers are not limits of series of | | | | rationals | 272 | | | 259. Segments of rationals | 273 | | | 260. Properties of segments | 274 | | | 261. Coherent classes in a series | 276 | | | Note | 276 | | 34 | Limits and Irrational Numbers | 278 | |----|---|-----| | | 262. Definition of a limit | 278 | | | 263. Elementary properties of limits | 279 | | | 264. An arithmetical theory of irrationals is | | | | indispensable | 280 | | | 265. Dedekind's theory of irrationals | 281 | | | 266. Defects in Dedekind's axiom of | | | | continuity | 281 | | | 267. Objections to his theory of irrationals | 282 | | | 268. Weierstrass's theory | 284 | | | 269. Cantor's theory | 285 | | | 270. Real numbers are segments of rationals | 288 | | 35 | Cantor's First Definition of Continuity | 290 | | | 271. The arithmetical theory of continuity is due | | | | to Cantor | 290 | | | 272. Cohesion | 291 | | | 273. Perfection | 293 | | | 274. Defect in Cantor's definition of perfection | 294 | | | 275. The existence of limits must not be | | | | assumed without special grounds | 296 | | 36 | Ordinal Continuity | 299 | | | 276. Continuity is a purely ordinal notion | 299 | | | 277. Cantor's ordinal definition of continuity | 299 | | | 278. Only ordinal notions occur in this | | | | definition | 301 | | | 279. Infinite classes of integers can be arranged | | | | in a continuous series | 302 | | | 280. Segments of general compact series | 302 | | | 281. Segments defined by fundamental series | 303 | | | 282. Two compact series may be combined to | _ | | | form a series which is not compact | 306 | | 37 | Transfinite Cardinals | 307 | | | 283. Transfinite cardinals differ widely from | | | | transfinite ordinals | 307 | | | 284. Definition of cardinals | 307 | | | 285. Properties of cardinals | 309 | | | 286. Addition, multiplication and exponentiation | 310 | | | 287. The smallest transfinite cardinal $lpha_{\circ}$ | 312 | | | 288. Other transfinite cardinals | 314 | | | 289. Finite and transfinite cardinals form a single | | | | series by relation to greater and less | 314 | ### XVI CONTENTS | 38 | Transfinite Ordinals | 316 | |----|--|-----| | | 290. Ordinals are classes of serial relations | 316 | | | 291. Cantor's definition of the second class of ordinals | 316 | | | 292. Definition of ω | 318 | | | 293. An infinite class can be arranged in many | | | | types of series | 319 | | | 294. Addition and subtraction of ordinals | 32 | | | 295. Multiplication and division | 322 | | | 296. Well-ordered series | 323 | | | 297. Series which are not well-ordered | 324 | | | 298. Ordinal numbers are types of well-ordered | | | | series | 325 | | | 299. Relation-arithmetic | 325 | | | 300. Proofs of existence-theorems | 326 | | | 301. There is no maximum ordinal number 302. Successive derivatives of a series | 327 | | | 302. Successive derivatives of a series | 327 | | 39 | The Infinitesimal Calculus | 330 | | | 303. The infinitesimal has been usually supposed | | | | essential to the calculus | 330 | | | 304. Definition of a continuous function | 33 | | | 305. Definition of the derivative of a function | 333 | | | 306. The infinitesimal is not implied in this | | | | definition | 334 | | | 307. Definition of the definite integral | 334 | | | 308. Neither the infinite nor the infinitesimal is | | | | involved in this definition | 335 | | 40 | The Infinitesimal and the Improper Infinite | 336 | | 40 | 309. A precise definition of the infinitesimal is | ,,, | | | seldom given | 336 | | | 310. Definition of the infinitesimal and the | | | | improper infinite | 337 | | | 311. Instances of the infinitesimal | 337 | | | 312. No infinitesimal segments in compact series | 339 | | | 313. Orders of infinity and infinitesimality | 341 | | | 314. Summary | 342 | | 43 | Philosophical Arguments Concerning the Infinitesimal | | | 41 | 315. Current philosophical opinions illustrated | 343 | | | by Cohen | 343 | | | 316. Who bases the calculus upon infinitesimals | 343 | | | 317. Space and motion are here irrelevant | 344 | | | and the second s | ノサヤ | | 318. | Cohen regards the doctrine of limits as | | |------|--|-----| | | insufficient for the calculus | 344 | | 319. | And supposes limits to be essentially | | | | quantitative | 345 | | 320. | To involve infinitesimal differences | 346 | | | And to introduce a new meaning of equality | 346 | | 322. | He identifies the inextensive with the intensive | 347 | | 323. | Consecutive numbers are supposed to be | | | | required for continuous change | 349 | | 324. | Cohen's views are to be rejected | 349 | | The | Philosophy of the Continuum | 351 | | 325. | Philosophical sense of continuity not | | | | here in question | 351 | | 326. | The continuum is composed of mutually | | | | external units | 352 | | | Zeno and Weierstrass | 352 | | - | The argument of dichotomy | 353 | | 329. | The objectionable and the innocent kind of | | | | endless regress | 354 | | 330. | Extensional and intensional definition | | | | of a whole | 354 | | | Achilles and the tortoise | 355 | | | The arrow | 355 | | | Change does not involve a state of change | 356 | | | The argument of the measure | 357 | | | Summary of Cantor's doctrine of continuity | 358 | | 336. | The continuum consists of elements | 359 | | The | Philosophy of the Infinite | 360 | | | Historical retrospect | 360 | | | Positive doctrine of the infinite | 361 | | | Proof that there are infinite classes | 362 | | | The paradox of Tristram Shandy | 363 | | | A whole and a part may be similar | 365 | | | Whole and part and formal implication | 365 | | | No immediate predecessor of ω or α_{o} | 366 | | 344. | Difficulty as regards the number of all terms, | | | | objects or propositions | 367 | | 345. | Cantor's first proof that there is no | | | | greatest number | 368 | | | His second proof | 369 | | 347. | Every class has more sub-classes than terms | 371 | ### XVIII CONTENTS | | 348. But this is impossible in 349. Resulting contradictions | | 372
372 | |-----|--|---------------------|------------| | | 350. Summary of Part V | | 373 | | PAF | RT VI SPACE | | 375 | | 44 | Dimensions and Complex Nu | mbers | 377 | | | 351. Retrospect | | 377 | | | 352. Geometry is the science | of series of two or | 0 | | | more dimensions | | 378 | | | 353. Non-Euclidean geometry 354. Definition of dimensions | | 379 | | | 354. Definition of dimensions 355. Remarks on the definition | | 380 | | | 356. The definition of dimens | | 381
382 | | | 357. Complex numbers and u | | 302
382 | | | 358. Algebraical generalizatio | | 382
383 | | | 359. Definition of complex nu | | 384 | | | 360. Remarks on the definition | | 385
385 | | 45 | Projective Geometry | | 387 | | 1,5 | 361. Recent threefold scruting | of geometrical | , | | | principles | o | 387 | | | 362. Projective, descriptive ar | d metrical geometry | 387 | | | 363. Projective points and str | aight lines | 388 | | | 364. Definition of the plane | - | 390 | | | 365. Harmonic ranges | | 390 | | | 366. Involutions | | 391 | | | 367. Projective generation of | order | 392 | | | 368. Möbius nets | | 394 | | | 369. Projective order presupp | osed in assigning | | | | irrational coordinates | | 395 | | | 370. Anharmonic ratio | | 396 | | | 371. Assignment of coordinat | es to any | _ | | | point in space | ler le l | 396 | | | 372. Comparison of projective | and Euclidean | | | | geometry | | 397 | | | 373. The principle of duality | | 398 | | 46 | Descriptive Geometry | | 399 | | | 374. Distinction between proj | ective and | | | | descriptive geometry | | 399 | | | 375. Method of Pasch and Pe | ano | 400 | 376. Method employing serial relations | | | CONTENTS | xix | |--------|--|----------------|-----| | | Mutual independence of axioms
Logical definition of the class of descriptive | 402 | | | | spaces | 403 | | | 379. | Parts of straight lines | 403 | | | 380. | Definition of the plane | 404 | | | 381. | Solid geometry | 405 | | | 382. | Descriptive geometry applies to Euclidean | | | | _ | and hyperbolic, but not elliptic space | 405 | | | 383. | Ideal elements | 405 | | | | Ideal points | 406 | | | | Ideal lines | 407 | | | | Ideal planes | 408 | | | | The removal of a suitable selection of points | 4 | | | | renders a projective space descriptive | 409 | | | | ical Geometry
Metrical geometry presupposes projective | 410 | | | ,00. | or descriptive geometry | 410 | | | 380 | Errors in Euclid | 410 | | | | Superposition is not a valid method | 411 | | | | Errors in Euclid (continued) | | | | | Axioms of distance | 412 | | | | Stretches | 413 | | | | | 414 | | | 395. | Order as resulting from distance alone Geometries which derive the straight line | 415 | | | | from distance | 416 | | | 396. | In most spaces, magnitude of divisibility can | | | | | be used instead of distance | 417 | | | | Meaning of magnitude of divisibility | 417 | | | | Difficulty of making distance independent of | | | | | stretch | 419 | | | | Theoretical meaning of measurement | 420 | | | 400. | Definition of angle | 420 | | | 401. | Axioms concerning angles | 421 | | | 402. | An angle is a stretch of rays, not a class | | | | | of points | 422 | | | 403. | Areas and volumes | 423 | | | | Right and left | 423 | | | Relat | ion of Metrical to Projective and Descriptive | | | | Geor | • | 425 | | | | Non-quantitative geometry has no metrical | , , | | | 1 - 3. | presuppositions | 425 | | | | in a sub-in a service | -J | | | | 406. Historical development of non-quantitative | | |----|---|-----| | | geometry | 426 | | | 407. Non-quantitative theory of distance | 428 | | | 408. In descriptive geometry | 429 | | | 409. And in projective geometry | 432 | | | 410. Geometrical theory of imaginary point-pairs | 432 | | | 411. New projective theory of distance | 433 | | 49 | Definitions of Various Spaces | 435 | | | 412. All kinds of spaces are definable in purely | | | | logical terms | 435 | | | 413. Definition of projective spaces of three | _ | | | dimensions | 436 | | | 414. Definition of Euclidean spaces of three | | | | dimensions | 438 | | | 415. Definition of Clifford's spaces of two | | | | dimensions | 440 | | 50 | The Continuity of Space | 443 | | | 416. The continuity of a projective space | 443 | | | 417. The continuity of a metrical space | 444 | | | 418. An axiom of continuity enables us to | | | | dispense with the postulate of the circle | 446 | | | 419. Is space prior to points? | 446 | | | 420. Empirical premisses and induction | 447 | | | 421. There is no reason to desire our premisses | | | | to be self-evident | 447 | | | 422. Space is an aggregate of points, not a unity | 448 | | 51 | Logical Arguments Against Points | 451 | | | 423. Absolute and relative position | 451 | | | 424. Lotze's arguments against absolute position | 452 | | | 425. Lotze's theory of relations | 452 | | | 426. The subject-predicate theory of propositions | 454 | | | 427. Lotze's three kinds of being | 455 | | | 428. Argument from the identity of indiscernibles | 457 | | | 429. Points are not active | 458 | | | 430. Argument from the necessary truths of | | | | geometry | 460 | | | 431. Points do not imply one another | 460 | | 52 | Kant's Theory of Space | 462 | | | 432. The present work is diametrically opposed | | | | to Kant | 462 | | | | CONTENTS | xxi | |------------|---|----------|-----| | | 433. Summary of Kant's theory
434. Mathematical reasoning requires no extra- | 462 | | | | logical element | 463 | | | | 435. Kant's mathematical antinomies | 464 | | | | 436. Summary of Part VI | 467 | | | PART | I VII MATTER AND MOTION | 469 | | | i 3 | Matter | 471 | | | | 437. Dynamics is here considered as a branch of | | | | | pure mathematics | 471 | | | | 438. Matter is not implied by space | 471 | | | | 439. Matter as substance | 472 | | | • | 440. Relations of matter to space and time 441. Definition of matter in terms of logical | 473 | | | | constants | 474 | | | 54 | Motion | 476 | | | | 442. Definition of change | 476 | | | | 443. There is no such thing as a state of change | 478 | | | | 444. Change involves existence | 478 | | | | 445. Occupation of a place at a time | 479 | | | | 446. Definition of motion | 479 | | | | 447. There is no state of motion | 480 | | | 55 | Causality | 481 | | | | 448. The descriptive theory of dynamics | 481 | | | | 449. Causation of particulars by particulars | 482 | | | | 450. Cause and effect are not temporally contiguous 451. Is there any causation of particulars by | 484 | | | | particulars? | 484 | | | | 452. Generalized form of causality | 485 | | | 6 | Definition of a Dynamical World | 487 | | | | 453. Kinematical motions | 487 | | | | 454. Kinetic motions | 487 | | | 57 | Newton's Laws of Motion | 489 | | | | 455. Force and acceleration are fictions | 489 | | | | 456. The law of inertia | 489 | | | | 457. The second law of motion | 490 | | | | 458. The third law | 490 | | | | 459. Summary of Newtonian principles | 492 | | | | 460. Causality in dynamics | 493 | | #### XXII CONTENTS | | 461. Accelerations as caused by particulars 462. No part of the laws of motion is an à priori truth | 49.
49 | |------|---|------------| | 58 | Absolute and Relative Motion | | | 50 | 463. Newton and his critics | 49
49 | | | 464. Grounds for absolute motion | 49 | | | 465. Neumann's theory | 499 | | | 466. Streintz's theory | 499 | | | 467. Mr Macaulay's theory | 499 | | | 468. Absolute rotation is still a change of relation | 500 | | | 469. Mach's reply to Newton | 500 | | 59 | Hertz's Dynamics | 50: | | | 470. Summary of Hertz's system | 50: | | | 471. Hertz's innovations are not fundamental | | | | from the point of view of pure mathematics | 50 | | | 472. Principles common to Hertz and Newton | 504 | | | 473. Principle of the equality of cause and effect | 504 | | | 474. Summary of the work | 50 | | APF | PENDICES | 50 | | List | of Abbreviations | 508 | | APP | PENDIX A | 509 | | The | Logical and Arithmetical Doctrines of Frege | 500 | | | 475. Principal points in Frege's doctrines | 509 | | | 476. Meaning and indication | 510 | | | 477. Truth-values and judgment | 51 | | | 478. Criticism | 512 | | | 479. Are assumptions proper names for the true | | | | or the false? | 513 | | | 480. Functions | 513 | | | 481. Begriff and Gegenstand | 515 | | | 482. Recapitulation of theory of propositional | | | | functions | 516 | | | 483. Can concepts be made logical subjects? | 519 | | | 484. Ranges | 520 | | | 485. Definition of ε and of relation | 521 | | | 486. Reasons for an extensional view of classes | 522 | | | 487. A class which has only one member is distinct from its only member | F 2 2 | | | 488. Possible theories to account for this fact | 523
523 | | | 400, 1 0331010 theories to account for this fact | 521 | ## CONTENTS XXIII 541 | 489. Recapitulation of theories already discussed | 525 | |---|-----| | 490. The subject of a proposition may be plural | 526 | | 491. Classes having only one member | 527 | | 492. Theory of types | 528 | | 493. Implication and symbolic logic | 529 | | 494. Definition of cardinal numbers | 529 | | 495. Frege's theory of series | 530 | | 496. Kerry's criticisms of Frege | 530 | | PPENDIX B | 534 | | he Doctrine of Types | 534 | | 497. Statement of the doctrine | 534 | | 498. Numbers and propositions as types | 537 | | 499. Are propositional concepts individuals? | 537 | | 500. Contradiction arising from the question | | | whether there are more classes of propositions than | | | propositions | 538 | | | | NDEX