Because Without Cause

Non-Causal Explanations in Science and Mathematics

Marc Lange

CONTENTS

	Preface	xi
PART	Scientific Explanations by Constraint	
. 1	What Makes a Scientific Explanation Distinctively Mathematical? 1.1. Distinctively Mathematical Explanations in Science as	3
	Non-Causal Scientific Explanations 1.2. Are Distinctively Mathematical Explanations Set Apart by	3
	Their Failure to Cite Causes?	12
	1.3. Mathematical Explanations Do Not Exploit Causal Powers	22
	1.4. How These Distinctively Mathematical Explanations Work 1.5. Elaborating My Account of Distinctively Mathematical	25
	Explanations	32
	1.6. Conclusion	44
2	"There Sweep Great General Principles Which All the Laws	
	Seem to Follow"	46
	2.1. The Task: To Unpack the Title of This Chapter	46
	2.2. Constraints versus Coincidences	49
	2.3. Hybrid Explanations	58
	2.4. Other Possible Kinds of Constraints besides	
	Conservation Laws	64
	2.5. Constraints as Modally More Exalted Than the Force Laws	
	They Constrain	68
	2.6. My Account of the Difference between Constraints	
	and Coincidences	72
	2.7. Accounts That Rule Out Explanations by Constraint	86
3	The Lorentz Transformations and the Structure of	
	Explanations by Constraint	96
	3.1. Transformation Laws as Constraints or Coincidences	96
	3.2. The Lorentz Transformations Given an Explanation	
	by Constraint	100
	3.3. Principle versus Constructive Theories	112
	3.4. How This Non-Causal Explanation Comes in Handy	123
	3.5. How Explanations by Constraint Work	128

	3.6. Supplying Information about the Source of a	
	Constraint's Necessity	136
	3.7. What Makes a Constraint "Explanatorily Fundamental"?	141
	Appendix: A Purely Kinematical Derivation of the	
	Lorentz Transformations	145
	·	
4	The Parallelogram of Forces and the Autonomy of Statics	150
	4.1. A Forgotten Controversy in the Foundations of	
	Classical Physics	150
	4.2. The Dynamical Explanation of the Parallelogram of Forces	154
	4.3. Duchayla's Statical Explanation	159
	4.4. Poisson's Statical Explanation	167
	4.5. Statical Explanation under Some Familiar Accounts of	
	Natural Law	173
	4.6. My Account of What Is at Stake	178
ΡΑΚΤ	II Two Other Varieties of Non-Causal Explanation	
	in Science	
5	Really Statistical Explanations and Genetic Drift	189
5	5.1. Introduction to Part II	189
	5.2. Really Statistical (RS) Explanations	190
	5.3. Drift	196
6	Dimensional Explanations	204
	6.1. A Simple Dimensional Explanation	204
	6.2. A More Complicated Dimensional Explanation	209
	6.3. Different Features of a Derivative Law May Receive	
	Different Dimensional Explanations	215
	6.4. Dimensional Homogeneity	219
	6.5. Independence from Some Other Quantities as Part of a	
	Dimensional Explanans	221
PART	Explanation in Mathematics	
7	Aspects of Mathematical Explanation: Symmetry, Salience,	
1	and Simplicity	231
	7.1. Introduction to Proofs That Explain Why Mathematical	201
	Theorems Hold	231
	7.2. Zeitz's Biased Coin: A Suggestive Example of	
	Mathematical Explanation	234
	7.3. Explanation by Symmetry	238
	·····	

	7.4. A Theorem Explained by a Symmetry in the Unit	
	Imaginary Number	239
	7.5. Geometric Explanations That Exploit Symmetry	245
	7.6. Generalizing the Proposal	254
	7.7. Conclusion	268
8	Mathematical Coincidences and Mathematical Explanations	
	That Unify	276
	8.1. What Is a Mathematical Coincidence?	276
	8.2. Can Mathematical Coincidence Be Understood without	
	Appealing to Mathematical Explanation?	283
	8.3. A Mathematical Coincidence's Components Have No	
	Common Proof	287
	8.4. A Shift of Context May Change a Proof's Explanatory Power	298
	8.5. Comparison to Other Proposals	304
	8.6. Conclusion	311
9	Desargues's Theorem as a Case Study of Mathematical	
	Explanation, Existence, and Natural Properties	314
	9.1. A Case Study	314
	9.2. Three Proofs—but Only One Explanation—of	
	Desargues's Theorem in Two-Dimensional	
	Euclidean Geometry	315
	9.3. Why Desargues's Theorem in Two-Dimensional Euclidean	
	Geometry Is Explained by an Exit to the Third Dimension	323
	9.4. Desargues's Theorem in Projective Geometry: Unification	
	and Existence in Mathematics	327
	9.5. Desargues's Theorem in Projective Geometry: Explanation	
	and Natural Properties in Mathematics	335
	9.6. Explanation by Subsumption under a Theorem	341
	9.7. Conclusion	345
PART	IV Explanations in Mathematics and Non-Causal	
	Scientific Explanations—Together	
10	Mathematical Coincidence and Scientific Explanation	340
10	10.1. Physical Coincidences That Are No Mathematical	017
	Coincidence	349
	10.2. Explanations from Common Mathematical Form	350
	10.3. Explanations from Common Dimensional Architecture	361
	10.4. Targeting New Explananda	368

11	What Makes Some Reducible Physical Properties Explanatory?	371	
	11.1. Some Reducible Properties Are Natural		
	11.2. Centers of Mass and Reduced Mass	378	
•	11.3. Reducible Properties on Strevens's Account of		
	Scientific Explanation	381	
	11.4. Dimensionless Quantities as Explanatorily Powerful		
	Reducible Properties	384	
	11.5. My Proposal	386	
	11.6. Conclusion: All Varieties of Explanation as Species of the		
	Same Genus	394	
	Notes	401	
	References	461	
	Index	483	