Artificial Intelligence and Scientific Method

DONALD GILLIES

Contents

1. The Inductivist Controversy, or Bacon versus	
ropper	1
1.1. Bacon's Inductivism	1
1.2. Popper's Falsificationism	3
1.3. Kepler's Discovery of the Laws of Planetary Motion	6
1.4. The Discovery of the Sulphonamide Drugs	11
2. Machine Learning in the Turing Tradition	17
2.1. The Turing Tradition	19
2.2. The Practical Problem: Expert Systems and	
Feigenbaum's Bottleneck	25
2.3. Attribute-Based Learning, Decision Trees, and	
Quinlan's ID3	31
2.4. GOLEM as an Example of Relational Learning	41
2.5. Bratko's Summary of the Successes of Machine	
Learning in the Turing Tradition, 1992	44
2.6. GOLEM's Discovery of a Law of Nature	50
3. How Advances in Machine Learning Affect the	
Inductivist Controversy	56
3.1. Bacon's Example of Heat	57
3.2. The Importance of Falsification	63
3.3. Bacon's Method has Only Recently Come to be Used	65
3.4. The Need for Background Knowledge	69
4. Logic Programming and a New Framework	
for Logic	72
4.1. The Development of PROLOG	72
4.2. PROLOG as a Non-Monotonic Logic:	
Negation-as-Failure and the Closed	
World Assumption	75
*4.3. Two Examples of Translations from One Logical	
System to Another	79

Contents

4.4.	Logic = Inference + Control	85
4.5.	PROLOG Introduces Control into Deductive Logic	86
4.6.	PROLOG and Certainty: Is Logic a priori or	
	Empirical?	94
5. Ca	an there be an inductive Logic?	98
5.1.	The Divergence between Deductive and Inductive	
	Logic (up to the Early 1970s)	99
5.2.	Inductive Logic as Inference + Control	102
5.3.	Confirmation Values as Control in a Deductive	
	Logic	105
5.4.	The Empirical Testing of Rival Logics	108
6 D	n Gödel's Incompleteness Theorems Place a	
Li	mit on Artificial Intelligence?	113
	inte on mennenar meenseneer	115
6.1.	Anxieties Caused by Advances in Artificial Intelligence	114
6.2.	Informal Exposition of Gödel's Incompleteness	
	Theorems	121
6.3.	The Lucas Argument	131
6.4.	Objections to the Lucas Argument:	
	(i) Possible Limitations on Self-Knowledge	142
6.5.	Objections to the Lucas Argument: (ii) Possible	
	Additions of Learning Systems	148
6.6.	Why Advances in Computing are more Likely to	
	Stimulate Human Thinking than to Render it	
	Superfluous	151
Notes		157
Refere	WCPS	166
ngin		100
Index		173