Notes to the reader	xv
Prologue	1
Dogt L. When We Need New Drug	ios to Understand

Part I: Why We Need New Physics to Understand the Mind

The Non-Computability of Conscious Thought

1 C	consciousness and computation	7
1.1	Mind and science	7
1.2	Can robots save this troubled world?	8
1.3	The $\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D}$ of computation and conscious thinking	12
1.4	Physicalism vs. mentalism	16
1.5	Computation: top-down and bottom-up procedures	17
1.6	Does viewpoint & violate the Church-Turing thesis?	20
1.7	Chaos	21
1.8	Analogue computation	24
1.9	What kind of action could be non-computational?	26
1.10	What of the future?	33
1.11	Can computers have rights or responsibilities?	35
1.12	'Awareness', 'understanding', 'consciousness', 'intelligence'	37
1.13	John Searle's argument	40
1.14	Some difficulties with the computational model	41
1.15	Do limitations of present-day AI provide a case for <i>C</i> ?	44
1.16	The argument from Gödel's theorem	48
1.17	Platonism or mysticism?	50
1.18	What is the relevance of mathematical understanding?	51

1.19	What has Gödel's theorem to do with common-sense	
	behaviour?	53
1.20	Mental visualization and virtual reality	56
1.21	Is mathematical imagination non-computational?	59
2 T	he Gödelian case	64
2.1	Gödel's theorem and Turing machines	64
2.2	Computations	66
2.3	Non-stopping computations	67
2.4	How do we decide that some computations do not stop?	68
2.5	Families of computations; the Gödel–Turing conclusion <i>G</i>	72
2.6	Possible technical objections to <i>G</i>	77
2.7	Some deeper mathematical considerations	88
2.8	The condition of ω -consistency	90
2.9	Formal systems and algorithmic proof	92
2.10	Further possible technical objections to <i>G</i>	95
App	endix A: An explicit Gödelizing Turing machine	117
3 T	he case for non-computability in mathematical	
thou	ught	127
3.1	What did Gödel and Turing think?	127
3.2	Could an unsound algorithm knowably simulate mathematical	
	understanding?	130
3.3	Could a knowable algorithm unknowably simulate	
	mathematical understanding?	132
3.4	Do mathematicians unwittingly use an unsound algorithm?	137
3.5	Can an algorithm be unknowable?	141
3.6	Natural selection or an act of God?	144
3.7	One algorithm or many?	145
3.8	Natural selection of unworldly esoteric mathematicians	147
3.9	Learning algorithms	150
3.10	May the environment provide a non-algorithmic external	
	factor?	152
3.11	How can a robot learn?	154
3.12	Can a robot attain 'firm mathematical beliefs'?	156
3.13	Mechanisms underlying robot mathematics	159
3.14	The basic contradiction	162
3.15	Ways that the contradiction might be averted	163
3.16	Does the robot need to believe in M?	164
3.17	Robot errors and robot 'meanings'?	167
3.18	How to incorporate randomness—ensembles of robot activity	169
3.19	The removal of erroneous ☆-assertions	170
3.20	Only finitely many $\Rightarrow_{\mathcal{A}}$ -assertions need be considered	173
3.21	Adequacy of safeguards?	176

3.22	Can chaos save the computational model of mind?	177
3.23	Reductio ad absurdum—a fantasy dialogue	179
3.24	Have we been using paradoxical reasoning?	190
3.25	Complication in mathematical proofs	193
3.26	Computational breaking of loops	195
3.27	Top-down or bottom-up computational mathematics?	199
3.28	Conclusions	201

Part II: What New Physics We Need to Understand the Mind

The Quest for a Non-Computational Physics of Mind

4 D	Does mind have a place in classical physics?	213
4.1	The mind and physical laws	213
4.2	Computability and chaos in the physics of today	214
4.3	Consciousness: new physics or 'emergent phenomenon'?	216
4.4	The Einstein <i>tilt</i>	217
4.5	Computation and physics	227
5 S	tructure of the quantum world	237
5.1	Quantum theory: puzzle and paradox	237
5.2	The Elitzur-Vaidman bomb-testing problem	239
5.3	Magic dodecahedra	240
5.4	Experimental status of EPR-type Z-mysteries	246
5.5	Quantum theory's bedrock: a history extraordinary	249
5.6	The basic rules of quantum theory	256
5.7	Unitary evolution U	259
5.8	State-vector reduction R	263
5.9	Solution of the Elitzur–Vaidman bomb-testing problem	268
5.10	Quantum theory of spin; the Riemann sphere	270
5.11	Position and momentum of a particle	277
5.12	Hilbert space	279
5.13	The Hilbert-space description of R	282
5.14	Commuting measurements	286
5.15	The quantum-mechanical 'and'	287
5.16	Orthogonality of product states	289
5.17	Quantum entanglement	290
5.18	The magic dodecahedra explained	296
App	endix B: The non-colourability of the dodecahedron	300
App	endix C: Orthogonality between general spin states	301
6 Q	Quantum theory and reality	307
6.1	Is R a real process?	307
6.2	Many-worlds-type viewpoints	310

63	Not taking he seriously	312
6.4	The density matrix	312
65	Density matrices for FPP pairs	310
6.6	$\mathbf{A} \mathbf{F} \mathbf{A} \mathbf{P} \mathbf{D}$ explanation of \mathbf{R}^{2}	321
67	Does FAPP explain the squared modulus rule?	325
6.8	Lo it consciousness that reduces the state vector?	320
6.0	Taking $ \psi\rangle$ really seriously	329
6 10	$G_{rewitationally}$ induced state vector reduction?	335
0.10	Absolute units	333
6.11	Absolute units The new criterion	337
0.12	The new criterion	339
7 Ç	uantum theory and the brain	348
7.1	Large-scale quantum action in brain function?	348
7.2	Neurons, synapses, and computers	352
7.3	Quantum computation	355
7.4	Cytoskeletons and microtubules	357
7.5	Quantum coherence within microtubules?	367
7.6	Microtubules and consciousness	369
7.7	A model for a mind?	371
7.8	Non-computability in quantum gravity: 1	377
7.9	Oracle machines and physical laws	379
7.10	Non-computability in quantum gravity: 2	381
7.11	Time and conscious perceptions	383
7.12	EPR and time: need for a new world-view	388
Q T.	nalizations?	202
0 11		393
8.1	Intelligent artificial 'devices'	393
8.2	Things that computers do well—or badly	396
8.3	Aesthetics, etc.	399
8.4	Some dangers inherent in computer technology	401
8.5	The puzzling election	403
8.6	The physical phenomenon of consciousness?	406
8.7	Three worlds and three mysteries	411
Epil	ogue	423
Bibl	iography	425
Ind		A 4 7
mat	5.8	44 /