TABLE OF CONTENTS

PREFACE	хi
CHAPTER 1/PROBABILITY AND INVERSE INFERENCE	
1.1. Introduction	1
1.2. Bayes' Theorem and the Laplacean Principle of Insufficient	
Reason	5
1.3. Inductive Relevance and Related Concepts:	
Likelihood, Sufficiency and Ancillarity	16
1.4. Continuity: The Cumulative Distribution Function and	
Density Function	21
CHAPTER 2/NEYMAN-PEARSON THEORY	
2.1. Introduction to the Neyman-Pearson Theory of Hypothesis	
Testing and Confidence Intervals	29
2.2. Hypothesis Testing	37
2.3. Two Uses of Randomizers to Produce 'Mixed' Tests with	
Improved Power over 'Pure' Tests	42
2.4. Tests with Composite Alternative Hypotheses	45
2.5. Hacking's Criticism of N-P Hypothesis Testing	47
2.6. The Sampling Rule Problem: Another Consequence of the	
Forward Look	49
2.7. Confidence Intervals	51
2.8. Composite Confidence Intervals and Confidence Equivalence	
Condition	58
2.9. An Example Illustrating the Use of Randomization for	
Constructing Confidence Intervals	63
CHAPTER 3/FISHERIAN SIGNIFICANCE TESTING	
3.1. Introduction to the Fisherian Theories of Significance	
Testing and Fiducial Probability	71
3.2. A Reconstruction of Fisherian Significance Tests	76

3.3. Data too Good to be True	84
3.4. Illegitimate Transformations of the Random Variable	86
3.5. Mistaken Analyses of Relevance and the r.v.	90
3.6. Composite Null Hypotheses, Ancillarity and Repeated	
Sampling	95
CHAPTER 4/THE FIDUCIAL ARGUMENT: ONE PARAME	TER
4.1. Introduction to the Fiducial Argument	105
4.2. The Pivotal Variable and the Smooth Invertibility Condition	107
4.3. Ancillarity, Smooth Invertibility and the CC Principle	112
4.4. Case 1: The Fiducial Argument with Data of Two Kinds	116
4.5. Case 2: The Fiducial Argument with Data of One Kind and a	
Common Sufficient Statistic	120
4.6. Case 2: Lindley's Paradox and Canonical Pivotal Variables	124
4.7. Two Notes on the Connection Between Significance and	
Fiducial Probability	128
4.8. Case 3: Data of One Kind without a Common Sufficient	
Statistic, a Paradox and the Principle of Insufficient Reason	129
CHAPTER 5/THE FIDUCIAL ARGUMENT:	
SEVERAL PARAMETERS	
5.1. Multivariate Fiducial Probability and the Step-by-Step	
Procedure	137
5.2. Multivariate Fiducial Probability and Repeated Sampling	146
5.3. Additional Factorizations and the Five Parameter Bivariate	
Normal	149
5.4. Review of Paradoxes: (1) Conflicts with N-P Theory	151
5.5. Review of Paradoxes: (2) Conflicts with Bayesian Theory	155
CHAPTER 6/IAN HACKING'S THEORY	
C. 1. To a TT- alst a de T the 1th and The test als a C Touris and a second	
6.1. Ian Hacking's Likelihood Principle of Irrelevance and	168
the Fiducial Argument	100
6.2. Hacking's Principle of Irrelevance and Generalized Inverse Inference	178
CHAPTER 7/HENRY KYBURG'S THEORY	
7.1. Henry Kyburg's 'Rationally Representative' Predicate and	
the Fiducial Argument	183

TABLE OF CONTENTS	ix
7.2. Kyburg's Relevance Conditions and Randomization	195
CHAPTER 8/RELEVANCE AND EXPERIMENTAL DES	IG N
8.1. Fisherian Theories of Relevance and Experimental Design	202
8.2. Randomization and Relevance	214
8.3. Summary	219
APPENDICES	
9.1. Pivotal Probabilities	226
9.2. The Equivalence of Fisher's and Tukey's Pivotal Conditions	227
9.3. Coherence of One Parameter Fiducial Arguments	228
9.4. Extended Coherence of Fiducial Probability	229
9.5. Hacking's Irrelevance Principle and Tukey's Smooth	
Invertibility Requirement	230
9.6. Hacking's Second Frequency Principle	231
9.7. Notes for the Bivariate Normal Distribution, Including	
a Derivation of the Master Significance Test [MST]	232
9.8. Additional Notes for Fieller's (also, the MST) Interval	
Estimate of the Ratio of Means in a Bivariate Normal	
Distribution	236
BIBLIOGRAPHY	239
INDEX	243