Contents

Fe	Foreword			<i>page</i> xiii
I	A	car	tesian introduction	I
		I	Proofs, applications, and other mathematical activities	1
		2	On jargon	2
		3	Descartes	3
	Α	Ар	plication	4
		4	Arithmetic applied to geometry	4
		5	Descartes' Geometry	5
		6	An astonishing identity	6
		7	Unreasonable effectiveness	6
		8	The application of geometry to arithmetic	8
		9	The application of mathematics to mathematics	9
		10	The same stuff?	II
		11	Over-determined?	12
		12	Unity behind diversity	13
		13	On mentioning honours – the Fields Medals	15
		14	Analogy – and André Weil 1940	16
		15	The Langlands programme	18
		16	Application, analogy, correspondence	20
	В	Pro	pof	21
		17	Two visions of proof	21
		18	A convention	21
		19	Eternal truths	22
		20	Mere eternity as against necessity	23
		21	Leibnizian proof	23
		22	Voevodsky's extreme	25
		23	Cartesian proof	26
		24	Descartes and Wittgenstein on proof	26
		25	The experience of cartesian proof: caveat emptor	28

Contents

	26	Grothendieck's cartesian vision: making it all obvious	29
	27	Proofs and refutations	30
	28	On squaring squares and not cubing cubes	32
	29	From dissecting squares to electrical networks	34
	30	Intuition	35
	31	Descartes against foundations?	37
	32	The two ideals of proof	38
	33	Computer programmes: who checks whom?	40
2	What	makes mathematics mathematics?	41
	I	We take it for granted	41
	2	Arsenic	42
	3	Some dictionaries	43
	4	What the dictionaries suggest	45
	5	A Japanese conversation	47
	6	A sullen anti-mathematical protest	48
	7	A miscellany	48
	8	An institutional answer	51
	9	A neuro-historical answer	52
	10	The Peirces, father and son	53
	II	A programmatic answer: logicism	54
	12	A second programmatic answer: Bourbaki	55
	13	Only Wittgenstein seems to have been troubled	57
	14	Aside on method – on using Wittgenstein	59
	15	A semantic answer	60
	16	More miscellany	61
	17	Proof	62
	18	Experimental mathematics	63
	19	Thurston's answer to the question 'what makes?'	66
	20	On advance	67
	21	Hilbert and the Millennium	68
	22	Symmetry	71
	23	The Butterfly Model	. 72
	24	Could 'mathematics' be a 'fluke of history'?	73
	25	The Latin Model	74
	26	Inevitable or contingent?	75
	27	Play	76
	28	Mathematical games, ludic proof	77
3	Why	is there philosophy of mathematics?	79
	I	A perennial topic	79
	2	What is the philosophy of mathematics anyway?	80

Contents

	3	Kant: in or out?	81
	4	Ancient and Enlightenment	83
А	An	answer from the ancients: proof and exploration	83
	5	The perennial philosophical obsession	83
	6	The perennial philosophical obsession is totally anomalous	85
	7	Food for thought (Matière à penser)	86
	8	The Monster	87
	9	Exhaustive classification	88
	10	Moonshine	89
	II	The longest proof by hand	89
	12	The experience of out-thereness	90
	13	Parables	91
	14	Glitter	91
	15	The neurobiological retort	92
	16	My own attitude	93
	17	Naturalism	94
	18	Plato!	96
В	An	answer from the Enlightenment: application	97
	19	Kant shouts	97
	20	The jargon	98
	21	Necessity	99
	22	Russell trashes necessity	100
	23	Necessity no longer in the portfolio	102
	24	Aside on Wittgenstein	103
	25	Kant's question	104
	26	Russell's version	105
	27	Russell dissolves the mystery	106
	28	Frege: number a second-order concept	107
	29	Kant's conundrum becomes a twentieth-century dilemma: (a) Vienna	108
	30	Kant's conundrum becomes a twentieth-century dilemma: (b) Quine	109
	31	Ayer, Quine, and Kant	110
	32	Logicizing philosophy of mathematics	111
	33	A nifty one-sentence summary (Putnam redux)	112
	34	John Stuart Mill on the need for a sound philosophy of mathematics	113
Pr	roofs	3	115
	I	The contingency of the philosophy of mathematics	115
Α	Lit	tle contingencies	116
	2	On inevitability and 'success'	116
	3	Latin Model: infinity	117
	4	Butterfly Model: complex numbers	119
	5	Changing the setting	121

4

Contents

	В	Pr	oof	122
		6	The discovery of proof	122
		7	Kant's tale	123
		8	The other legend: Pythagoras	126
		9	Unlocking the secrets of the universe	127
		10	Plato, theoretical physicist	129
		11	Harmonics works	130
		12	Why there was uptake of demonstrative proof	131
		13	Plato, kidnapper	132
		14	Another suspect? Eleatic philosophy	133
		15	Logic (and rhetoric)	135
		16	Geometry and logic: esoteric and exoteric	136
		17	Civilization without proof	137
		18	Class bias	138
		19	Did the ideal of proof impede the growth of knowledge?	139
		20	What gold standard?	140
		21	Proof demoted	141
		22	A style of scientific reasoning	142
5	Applications			144
		I	Past and present	I44
	А	Th	e emergence of a distinction	I44
		2	Plato on the difference between philosophical and practical	
			mathematics	I44
		3	Pure and mixed	146
		4	Newton	148
		5	Probability – swinging from branch to branch	149
		6	Rein and angewandt	150
		7	Pure Kant	151
		8	Pure Gauss	152
		9	The German nineteenth century, told in aphorisms	153
		10	Applied <i>polytechniciens</i>	153
		п	Military history	156
		12	William Rowan Hamilton	158
		13	Cambridge pure mathematics	160
		14	Hardy, Russell, and Whitehead	161
		15	Wittgenstein and von Mises	162
		16	SIAM	163
	В	A١	very wobbly distinction	164
		17	Kinds of application	164
		18	Robust but not sharp	168

х

Со	nte	ents
0	nte	ents

	19	Philosophy and the <i>Apps</i>	169
	20	Symmetry	171
	21	The representational-deductive picture	172
	22	Articulation	174
	23	Moving from domain to domain	174
	24	Rigidity	176
	25	Maxwell and Buckminster Fuller	176
	26	The maths of rigidity	179
	27	Aerodynamics	181
	28	Rivalry	182
	29	The British institutional setting	184
	30	The German institutional setting	186
	31	Mechanics	187
	32	Geometry, 'pure' and 'applied'	188
	33	A general moral	188
	34	Another style of scientific reasoning	189
In	ı Pla	ito's name	191
	I	Hauntology	191
	2	Platonism	191
	3	Webster's	193
	4	Born that way	193
	5	Sources	194
	6	Semantic ascent	195
	7	Organization	196
А	Ala	ain Connes, Platonist	197
	8	Off-duty and off-the-cuff	197
	9	Connes' archaic mathematical reality	198
	10	Aside on incompleteness and platonism	201
	11	Two attitudes, structuralist and Platonist	202
	12	What numbers could not be	203
	13	Pythagorean Connes	205
В	Tir	mothy Gowers, anti-Platonist	206
	14	A very public mathematician	206
	15	Does mathematics need a philosophy? No	207
	16	On becoming an anti-Platonist	208
	17	Does mathematics need a philosophy? Yes	209
	18	Ontological commitment	211
	19	Truth	212
	20	Observable and abstract numbers	213
	21	Gowers versus Connes	215

6

xi

Contents

	22	The 'standard' semantical account	216
	23	The famous maxim	218
	24	Chomsky's doubts	220
	25	On referring	221
7 Co	oun	ter-platonisms	223
	I	Two more platonisms – and their opponents	223
Α	То	talizing platonism as opposed to intuitionism	224
	2	Paul Bernays (1888–1977)	224
	3	The setting	225
	4	Totalities	227
	5	Other totalities	228
	6	Arithmetical and geometrical totalities	230
	7	Then and now: different philosophical concerns	231
	8	Two more mathematicians, Kronecker and Dedekind	232
	9	Some things Dedekind said	233
	10	What was Kronecker protesting?	235
	II	The structuralisms of mathematicians and philosophers distinguished	236
В	То	day's platonism/nominalism	238
	12	Disclaimer	238
	13	A brief history of nominalism now	238
	14	The nominalist programme	239
	15	Why deny?	241
	16	Russellian roots	242
	17	Ontological commitment	244
	18	Commitment	245
	19	The indispensability argument	246
	20	Presupposition	248
	21	Contemporary platonism in mathematics	250
	22	Intuition	252
	23	What's the point of platonism?	253
	24	Peirce: The only kind of thinking that has ever advanced human culture	
	25	Where do I stand on today's platonism/nominalism?	256
	26	The last word	256
Disclos	sure.	s	258
Referen			262
Index	5		